
CSE 311: Foundations of Computing

Lecture 20: Context-Free Grammars,

Relations and Directed Graphs

Parse Trees

Suppose that grammar G generates a string x

• A parse tree of x for G has

– Root labeled S (start symbol of G)

– The children of any node labeled A are labeled by

symbols of w left-to-right for some rule A → w

– The symbols of x label the leaves ordered left-to-right

S → 0S0 | 1S1 | 0 | 1 | ε

S

0 0S

S1 1

1
Parse tree of 01110

Simple Arithmetic Expressions

E→ E+E | E∗E | (E) | x | y | z | 0 | 1 | 2 | 3 | 4

| 5 | 6 | 7 | 8 | 9

Two parse trees for 2+3∗4

E

E E+

∗E E2

3 4

∗

+E E

2

E

E E

3

4

Building precedence in simple arithmetic expressions

• E – expression (start symbol)

• T – term F – factor I – identifier N - number

E → T | E+T

T → F | T∗F

F → (E) | I | N

I → x | y | z

N → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Building precedence in simple arithmetic expressions

• E – expression (start symbol)

• T – term F – factor I – identifier N - number

E → T | E+T

T → F | T∗F

F → (E) | I | N

I → x | y | z

N → 0 | 1 | 2 | 3 | 4 |

5 | 6 | 7 | 8 | 9

E

E T+

∗T F

2

F

N

T

3

F

N 4

N

Backus-Naur Form (The same thing…)

BNF (Backus-Naur Form) grammars

– Originally used to define programming

languages

– Variables denoted by long names in angle

brackets, e.g.

<identifier>, <if-then-else-statement>,

<assignment-statement>, <condition>

∷= used instead of →

BNF for C (no <...> and uses : instead of ::=)

Parse Trees

Back to middle school:

<sentence>∷=<noun phrase><verb phrase>

<noun phrase>∷==<article><adjective><noun>

<verb phrase>∷=<verb><adverb>|<verb><object>

<object>∷=<noun phrase>

Parse:

The yellow duck squeaked loudly

The red truck hit a parked car

Relations and Directed Graphs

Relations

Let A and B be sets,

A binary relation from A to B is a subset of A × B

Let A be a set,

A binary relation on A is a subset of A × A

Relations You Already Know!

≥ on ℕ

That is: {(x,y) : x ≥ y and x, y ∈ ℕ}

< on ℝ

That is: {(x,y) : x < y and x, y ∈ ℝ}

= on ∑*

That is: {(x,y) : x = y and x, y ∈ ∑*}

⊆ on (U) for universe U

That is: {(A,B) : A ⊆ B and A, B ∈ (U)}

More Relation Examples

R1 = {(a, 1), (a, 2), (b, 1), (b, 3), (c, 3)}

R2 = {(x, y) | x ≡ y (mod 5) }

R3 = {(c1, c2) | c1 is a prerequisite of c2 }

R4 = {(s, c) | student s has taken course c }

Properties of Relations

Let R be a relation on A.

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b, a)∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R

R is transitive iff (a,b)∈ R and (b, c)∈ R implies (a, c) ∈ R

Which relations have which properties?

≥ on ℕ :

< on ℝ :

= on ∑* :

⊆ on (U):

R2 = {(x, y) | x ≡ y (mod 5) } :

R3 = {(c1, c2) | c1 is a prerequisite of c2 }:

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b, a)∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R

R is transitive iff (a,b)∈ R and (b, c)∈ R implies (a, c) ∈ R

Which relations have which properties?

≥ on ℕ : Reflexive, Antisymmetric, Transitive

< on ℝ : Antisymmetric, Transitive

= on ∑* : Reflexive, Symmetric, Transitive

⊆ on (U): Reflexive, Antisymmetric, Transitive

R2 = {(x, y) | x ≡ y (mod 5) } : Reflexive, Symmetric, Transitive

R3 = {(c1, c2) | c1 is a prerequisite of c2 }: Antisymmetric

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b, a)∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R

R is transitive iff (a,b)∈ R and (b, c)∈ R implies (a, c) ∈ R

Combining Relations

Let � be a relation from � to �.

Let � be a relation from � to �.

The composition of � and �, � ∘ � is the relation

from � to � defined by:

� ∘ � = { (a, c) | ∃ b such that (a,b)∈ � and (b,c)∈ �}

Intuitively, a pair is in the composition if there is a

“connection” from the first to the second.

Examples

(a,b) ∈ Parent iff b is a parent of a

(a,b) ∈ Sister iff b is a sister of a

When is (x,y) ∈ Sister ∘ Parent?

When is (x,y) ∈ Parent ∘ Sister?

S ∘ R = {(a, c) | ∃ b such that (a,b)∈ R and (b,c)∈ S}

Examples

Using the relations: Parent, Child, Brother,

Sister, Sibling, Father, Mother, Husband, Wife

express:

Uncle: b is an uncle of a

Cousin: b is a cousin of a

Powers of a Relation

�� = � ∘ �

= { �, � ∣ ∃� such that �, � ∈ � and �, � ∈ � }

�) = { �, � ∣ � ∈ �} “the equality relation on �”

�* = � = �) ∘ �

�+,* = �+ ∘ � for + ≥)

Matrix Representation

Relation � on � = {-., … , -0}

{ (1, 1), (1, 2), (1, 4), (2, 1), (2, 3), (3, 2), (3, 3), (4, 2), (4, 3) }

1 2 3 4

1 1 1 0 1

2 1 0 1 0

3 0 1 1 0

4 0 1 1 0

123 =
1 if -7 , -8 ∈ �

0 if -7 , -8 ∉ �

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges, ordered pairs of vertices

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges, ordered pairs of vertices

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges, ordered pairs of vertices

Directed Graphs

Path: v0, v1, …, vk with each (vi, vi+1) in E

Simple Path: none of v0 , …, vk repeated
Cycle: v0= vk
Simple Cycle: v0= vk , none of v1, …, vk repeated

G = (V, E) V – vertices
E – edges, ordered pairs of vertices

Representation of Relations

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

a d

e

b c

Representation of Relations

Directed Graph Representation (Digraph)

{(a, b), (a, a), (b, a), (c, a), (c, d), (c, e) (d, e) }

a d

e

b c

Relational Composition using Digraphs

If � = �, � , �, : , :, * and � = { *, � , �, * , *, : }

Compute � ∘ �

1

3

2 1

3

2

Relational Composition using Digraphs

If � = �, � , �, : , :, * and � = { *, � , �, * , *, : }

Compute � ∘ �

1

3

2 1

3

2

Relational Composition using Digraphs

If � = �, � , �, : , :, * and � = { *, � , �, * , *, : }

Compute � ∘ �

1

3

2 1

3

2

Paths in Relations and Graphs

Let � be a relation on a set �. There is a path of

length + from a to b if and only if (a,b) � �+

Defn: The length of a path in a graph is the number of

edges in it (counting repetitions if edge used > once).

Connectivity In Graphs

Let � be a relation on a set �. The connectivity

relation �∗ consists of the pairs (-,;) such that there is

a path from - to ; in �.

Note: The text uses the wrong definition of this quantity.

What the text defines (ignoring k=0) is usually called R+

Defn: Two vertices in a graph are connected iff there is

a path between them.

How Properties of Relations show up in Graphs

Let R be a relation on A.

R is reflexive iff (a,a) ∈ R for every a ∈ A

R is symmetric iff (a,b) ∈ R implies (b, a)∈ R

R is transitive iff (a,b)∈ R and (b, c)∈ R implies (a, c) ∈ R

R is antisymmetric iff (a,b) ∈ R and a ≠ b implies (b,a) ∉ R

Transitive-Reflexive Closure

Add the minimum possible number of edges to make the

relation transitive and reflexive.

The transitive-reflexive closure of a relation � is the

connectivity relation �*

Transitive-Reflexive Closure

Relation with the minimum possible number of extra edges to

make the relation both transitive and reflexive.

The transitive-reflexive closure of a relation � is the

connectivity relation �*

<-ary Relations

Let �*, ��, … , �+ be sets. An +-ary relation on

these sets is a subset of �*×��× ⋯ × �+.

Relational Databases

Student_Name ID_Number Office GPA

Knuth 328012098 022 4.00

Von Neuman 481080220 555 3.78

Russell 238082388 022 3.85

Einstein 238001920 022 2.11

Newton 1727017 333 3.61

Karp 348882811 022 3.98

Bernoulli 2921938 022 3.21

STUDENT

Relational Databases

Student_Name ID_Number Office GPA Course

Knuth 328012098 022 4.00 CSE311

Knuth 328012098 022 4.00 CSE351

Von Neuman 481080220 555 3.78 CSE311

Russell 238082388 022 3.85 CSE312

Russell 238082388 022 3.85 CSE344

Russell 238082388 022 3.85 CSE351

Newton 1727017 333 3.61 CSE312

Karp 348882811 022 3.98 CSE311

Karp 348882811 022 3.98 CSE312

Karp 348882811 022 3.98 CSE344

Karp 348882811 022 3.98 CSE351

Bernoulli 2921938 022 3.21 CSE351

What’s not so nice?

STUDENT

Relational Databases

ID_Number Course

328012098 CSE311

328012098 CSE351

481080220 CSE311

238082388 CSE312

238082388 CSE344

238082388 CSE351

1727017 CSE312

348882811 CSE311

348882811 CSE312

348882811 CSE344

348882811 CSE351

2921938 CSE351Better

Student_Name ID_Number Office GPA

Knuth 328012098 022 4.00

Von Neuman 481080220 555 3.78

Russell 238082388 022 3.85

Einstein 238001920 022 2.11

Newton 1727017 333 3.61

Karp 348882811 022 3.98

Bernoulli 2921938 022 3.21

STUDENT TAKES

Database Operations: Projection

Find all offices: >?@@ABC STUDENT
Office

022

555

333

Find offices and GPAs: >?@@ABC,JKL STUDENT

Office GPA

022 4.00

555 3.78

022 3.85

022 2.11

333 3.61

022 3.98

022 3.21

Database Operations: Selection

Find students with GPA > 3.9 : σGPA>3.9(STUDENT)

Student_Name ID_Number Office GPA

Knuth 328012098 022 4.00

Karp 348882811 022 3.98

Retrieve the name and GPA for students with GPA > 3.9:

ΠStudent_Name,GPA(σGPA>3.9(STUDENT))

Student_Name GPA

Knuth 4.00

Karp 3.98

Database Operations: Natural Join

Student_Name ID_Number Office GPA Course

Knuth 328012098 022 4.00 CSE311

Knuth 328012098 022 4.00 CSE351

Von Neuman 481080220 555 3.78 CSE311

Russell 238082388 022 3.85 CSE312

Russell 238082388 022 3.85 CSE344

Russell 238082388 022 3.85 CSE351

Newton 1727017 333 3.61 CSE312

Karp 348882811 022 3.98 CSE311

Karp 348882811 022 3.98 CSE312

Karp 348882811 022 3.98 CSE344

Karp 348882811 022 3.98 CSE351

Bernoulli 2921938 022 3.21 CSE351

Student ⋈ Takes

