CSE 311: Foundations of Computing

Lecture 18: Structural Induction, Regular expressions

M . d teun. KAMJO—J

(\PN L a “
~ OH NO! THE KILLER || BUT TO FIND THEM WED HAVE T0 SEARCH
WHENEVER T LEARN A | | MUST HAVE FOLLOWED| | THROUGH 200 MB OF EMAILS LODKING FOR
Kw (U)é’/ [~ NEW SKILL I CONCOCT | [HER ON VACATION! || SOMETHING FORMATTED LIKE AN ADDRESS!
ELABORATE FANTASY I /

Somdeq Sopm G| 4R ot~

E’??b» i, s | (R
SR o

$(whws Ao o
WY yeled =
“»g } M N Z
ale

(‘M’Q\(S,
vtk ¢ty R

Recursive Definitions of Sets: General Form

Recursive definition

— Basis step: Some specific elements are in S

— Recursive step: Given some existing named
elements in S some new objects constructed
from these named elements are also in S.

— Exclusion rule: Every element in S follows from

the basis step and a finite number of recursive
steps

Structural Induction

How to prove V x € S, P(x) is true:

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude that V x € S, P(x)

Strings

 An alphabet X is any finite set of characters

 The set X * of strings over the alphabet X is
defined by

— Basis: £ 2)'L (¢ is the empty string w/ no chars)
— Recursive: if@*, ae X, thenwae 2*

Functions on Recursively Defined Sets (on X%)

Length:
len(g) =0
len(wa)=1+len(w)forwe X", aeX

Reversal:
eR=¢g
(wa)k=awRforwe X, aeX

Concatenation:
xec=xforx€ X"
xewa=(xew)aforxeX* aeX

Number of ¢’s in a string:
#(g)=0
(wc)=# (w)+1forweX”
#(wa)=#(w)forweX ", a€X, azc

Claim: len(xey) = len(x) + len(y) for all x,y € X*

Let P(y) be “len(xey) = len(x) + len(y) for_a_lll(__e__Z*
We prove P(y) for all y € X* by structural induction.

Claim: len(xey) = len(x) + len(y) for all x,y € X~

Let P(y) be “len(xey) = len(x) + len(y) forall x e X*".

We prove P(y) for all y € X* by structural induction. L0

Base Case: y=c.Forany x € X%, len(xe €) = len(x) = len(x) + len(g)
since len(€)=0. Therefore P(¢g) is true

Claim: len(xey) = len(x) + len(y) for all x,y € X~

Let P(y) be “len(xey) = len(x) + len(y) forall x e X*".
We prove P(y) for all y € X* by structural induction.

Base Case: y=c.Forany x € X%, len(xe €) = len(x) = len(x) + len(g)
since len(€)=0. Therefore P(¢g) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
wEeEXY”

Inductive Step: |Goal: Show that P(wa) is true for every aEXY
1A a€g be awlhibey ad (of EEF b aulibamg

b eF o
s (VO l A(&U"\OA 97 4
\Cw\()() |e¢;,(>< W) 4\ 11) ded. of [en

law () el ar(vn 97 I tj“d; e

ey G G
V){({*ﬂ/)(egf“ Low, O<° q) = lau (x) 4lertly)) yd

=
—
——
-
-
-

Claim: len(xey) = len(x) + len(y) for all x,y € X~

Let P(y) be “len(xey) = len(x) + len(y) forall x e X*".
We prove P(y) for all y € X* by structural induction.

Base Case: y=c.Forany x € X%, len(xe €) = len(x) = len(x) + len(g)
since len(€)=0. Therefore P(¢g) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
wEeEXY”

Inductive Step: |Goal: Show that P(wa) is true for every a € X

LetaeX. Letx € X*. Then len(xewa) = len((xew)a) by defn of e
= |len(xew)+1 by defn of len
= len(x)+len(w)+1 by I.H.
= len(x)+len(wa) by defn of len

Therefore len(xewa)= len(x)+len(wa) for all x € X*, so P(wa) is true.

So, by induction len(xey) = len(x) + len(y) for all x,y € X~

Rooted Binary Trees

* Basis: .
* Recursive step:

Is a rooted binary tree

Defining Functions on Rooted Binary Trees

1 + size(T,) + size(T,)

=1 + max{height(T,), height(T,)}

Claim: For every rooted binary treQ@T)s 2height(T) Q

(. let DCT) e T e [l Pt) Hor oll lpated ltanny Freqs
' T (7] bl T~ el et (e O
' c¢iveCyz | WaWr(T) cheqylala=
e @(/e CQIQ. ": o 5,\21(‘\')’ .§l}€) Z\L‘(‘w(l)*L\& ,2'02\’\.:7_\:\
5 r0e KV v

Claim: For every rooted binary tree T, size(T) < 2heightT) +1 _ 1

1. Let P(T) be “size(T) < 2heieht(M+1_1", We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(*)=1, height(*)=0 and 1=21-1=2%1-1 so P(e) is true.

7. D gy = Ceppese Alad POA) Q(&\ . frane
‘L’ J (YN auv\‘f\w) Je.(x (I“"”] ")/‘UI@M&

/

“ Mw-_l\«/[i«f- Gﬂ}w? v B

Claim: For every rooted binary tree T, size(T) < 2heightm +1 _ 1

1. Let P(T) be “size(T) < 2heieht(M+1_1", We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(*)=1, height(*)=0 and 1=21-1=2%1-1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,.

4. Inductive Step: Goal: Prove P(£ X)_|

..............

% ?e(’) 4 [ede .) d b def- Jj“m
g (ﬂ%} P Jiwly\%*l %%gm \ 7 :r\'(fw
) |)_;‘* A b

Claim: For every rooted binary tree T, size(T) < 2heightT) +1 _ 1

1. Let P(T) be “size(T) < 2heieht(M+1_1", We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(*)=1, height(*)=0 and 1=21-1=2%1-1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,.

4. Inductive Step: Goal: Prove P(\F/\)._|

..............

by IH for T, and T,
— 2height(T1)+1+2height(T2)+1 -1

< 2(2max(height(Tl),height(TZ))+1) -1
= 2(2height(£ 3)) - 1 = 2height(£

.............................

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.

Languages: Sets of Strings

e Sets of strings that satisfy special properties
are called languages. Examples:

— English sentences

— Syntactically correct Java/C/C++ programs

— ¥" = All strings over alphabet X

— Palindromes over %

— Binary strings that don’t have a O aftera 1

— Legal variable names. keywords in Java/C/C++
— Binary strings with an equal # of O’s and 1’s

Regular Expressions

Regular expressions over X
* Basis:
D, € are regular expressions
a is a regular expression foranya € X

* Recursive step:
— If A and B are regular expressions then so are:
(A U B)
(AB)
A*

Each Regular Expression is a “pattern”

€ matches the empty string
a matches the one character string a

(A U B) matches all strings that either A matches
or B matches (or both)

(AB) matches all strings that have a first part that
A matches followed by a second part that B
matches

A* matches all strings that have any number of
strings (even 0) that A matches, one after
another

Examples o de, (101, - -)

001*

Zoo} 061, 001l Qelll, 00N, . - - 'S

/

w"\(— b..., #"‘\09 AM
(79 “wy H 6A(CJ’§

Z QG ey, Tt dant (obes o)

0*1* ":—S ‘lb\“ﬂ /(""1/

Examples

001*

{00, 001, 0011, 00111, ...}

O*1*

Any number of O’s followed by any number of 1’s

Examples

Oul)oOoulo
Y

¢ 0006, GOlo, 009, 10!0}

O*19% Gl iy ey
[Og(\x c((/, U'N'T‘/j

/

%a/(g* afl hro~ey /7("47/

Examples

Oul)oOoulo

{0000, 0010, 1000, 1010}

(O*1*)*

All binary strings

Examples

(Ou1)*0110(0uU 1)*
9}&4»1 /s Tod O bon

O o

(00 L 11)* (01010 LU 10001) (0 L 1)*
Dy Shangs Al g L

/.Qf Y oY)

((61) 0]}

Examples

(Ou1)*0110(0uU 1)*

Binary strings that contain “0110”

(00U 11)* (01010 LU 10001) (O U 1)*

Binary strings that begin with éairs of characters
followed by “01010” or “10001”)

), "(al)sc ‘.“M

s
- D @TFCe ot
N e)

Regular Expressions in Practice

« Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

 Usedin grep, a program that does pattern matching
searches in UNIX/LINUX

e Pattern matching using regular expressions is an essential
feature of PHP '

* We can use regular expressions in programs to process
strings!

Regular Expressions in Java

* Pattern p = Pattern.compile("a*b");
 Matcher m = p.matcher("aaaaab");

* boolean b = m.matches();
[01] aOoral ~startofstring $ end of string
[0-9] anysingledigit \. period \, comma \- minus
any single character

ab a followed by b (AB)
(alb) aorb (A U B)
a? zero or one of a (AU E€)
a* zero or more of a A*

a+ one or more of a AA*

* eg AI\=-+1?2[0-91*(\.]|\,)?[0-9]+$
General form of decimal number e.g. 9.12 or -9,8 (Europe)

