CSE 311: Foundations of Computing

Lecture 18: Structural Induction, Regular expressions

Recursive Definitions of Sets: General Form

Recursive definition

- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
- Exclusion rule: Every element in S follows from the basis step and a finite number of recursive steps

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some arbitrary values of each of the existing named elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the Recursive step using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Strings

- An alphabet ∑ is any finite set of characters
- The set Σ* of strings over the alphabet Σ is defined by
 - Basis: $\varepsilon \in \Sigma$ (ε is the empty string w/ no chars)
 - Recursive: if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Functions on Recursively Defined Sets (on Σ^*)

Length:

$$len(\varepsilon) = 0$$

 $len(wa) = 1 + len(w)$ for $w \in \Sigma^*$, $a \in \Sigma$

Reversal:

$$\varepsilon^R = \varepsilon$$
(wa)^R = aw^R for $w \in \Sigma^*$, $a \in \Sigma$

Concatenation:

$$x \bullet \varepsilon = x \text{ for } x \in \Sigma^*$$

 $x \bullet wa = (x \bullet w)a \text{ for } x \in \Sigma^*, a \in \Sigma$

Number of c's in a string:

$$\#_c(\epsilon) = 0$$

$$\#_c(wc) = \#_c(w) + 1 \text{ for } w \in \Sigma^*$$

$$\#_c(wa) = \#_c(w) \text{ for } w \in \Sigma^*, a \in \Sigma, a \neq c$$

Let P(y) be "len($x \cdot y$) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Let P(y) be "len $(x \cdot y) = len(x) + len(y)$ for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true

Let P(y) be "len $(x \cdot y) = len(x) + len(y)$ for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \cdot \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon) = 0$. Therefore $P(\varepsilon)$ is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

let $\alpha \in \mathcal{Z}$ be autitray, and let $\chi \in \mathcal{Z}^k$ be autitray

len $(\chi \circ \omega \alpha) = \text{len}((\kappa \omega) \alpha)$ by defin of o $= \text{len}(\chi \circ \omega) + 1$ by det. of len $= \text{len}(\chi) + \text{len}(\omega) + 1$ by def do len $= \text{len}(\chi) + \text{len}(\omega)$ by def do len $= \text{len}(\chi) + \text{len}(\omega)$ by def do len $= \text{len}(\chi) + \text{len}(\omega)$ by definition (i) thus $= \text{len}(\chi) + \text{len}(\chi) + \text{len}(\chi) + \text{len}(\chi)$ $= \text{len}(\chi) + \text{len}(\chi) + \text{len}(\chi) + \text{len}(\chi)$

Let P(y) be "len $(x \cdot y) = len(x) + len(y)$ for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \cdot \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon) = 0$. Therefore $P(\varepsilon)$ is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let $a \in \Sigma$. Let $x \in \Sigma^*$. Then $len(x \cdot wa) = len((x \cdot w)a)$ by defn of \bullet

= len(x•w)+1 by defn of len

= len(x)+len(w)+1 by I.H.

= len(x)+len(wa) by defn of len

Therefore $len(x \cdot wa) = len(x) + len(wa)$ for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction $len(x \bullet y) = len(x) + len(y)$ for all $x,y \in \Sigma^*$

Rooted Binary Trees

Basis:

- is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

• size(\bullet) = 1

• height(•) = 0

• height
$$(T_1)$$
 = 1 + max{height(T_1), height(T_2)}

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

(. let P(T) /c ... vie prove P(T) for all boosted binery they

The structural Taduch

Pere Care: T= ... Size(T)= size(.) = 1 height(T) = height()= 0

2 height(T)+1 = 20+1 = 7-1=7-1=1

> size(T).

3.

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: $size(\bullet)=1$, $height(\bullet)=0$ and $1=2^{1}-1=2^{0+1}-1$ so $P(\bullet)$ is true.

9. Ind thypotherij: Suppose that P(A) and P(A) are true

for her arbitry broked birm tree! A m As

(1. Indulu Hyr. | Goal: P(A) (A)

Show P(A)

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T)+1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: $size(\bullet)=1$, $height(\bullet)=0$ and $1=2^{1}-1=2^{0+1}-1$ so $P(\bullet)$ is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .
- 4. Inductive Step: Goal: Prove P(\(\) \(\) \(\)

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: $size(\bullet)=1$, $height(\bullet)=0$ and $1=2^{1}-1=2^{0+1}-1$ so $P(\bullet)$ is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .

4. Inductive Step: Goal: Prove P().

By defn, size() =1+size(
$$T_1$$
)+size(T_2)
$$\leq 1+2^{\operatorname{height}(T_1)+1}-1+2^{\operatorname{height}(T_2)+1}-1$$

$$= 2^{\operatorname{height}(T_1)+1}+2^{\operatorname{height}(T_2)+1}-1$$

$$\leq 2(2^{\operatorname{max}(\operatorname{height}(T_1),\operatorname{height}(T_2))+1})-1$$

$$= 2(2^{\operatorname{height}(A_1)})-1=2^{\operatorname{height}(A_2)+1}-1$$
which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.

Languages: Sets of Strings

- Sets of strings that satisfy special properties are called languages. Examples:
 - English sentences
 - Syntactically correct Java/C/C++ programs
 - $-\Sigma^*$ = All strings over alphabet Σ
 - Palindromes over Σ
 - Binary strings that don't have a 0 after a 1
 - Legal variable names. keywords in Java/C/C++
 - Binary strings with an equal # of 0's and 1's

Regular Expressions

Regular expressions over Σ

Basis:

```
\emptyset, \varepsilon are regular expressions \alpha is a regular expression for any \alpha \in \Sigma
```

- Recursive step:
 - If A and B are regular expressions then so are:

```
(A ∪ B)
(AB)
A*
```

Each Regular Expression is a "pattern"

- ε matches the empty string
- a matches the one character string a
- ($A \cup B$) matches all strings that either A matches or B matches (or both)
- (AB) matches all strings that have a first part that A matches followed by a second part that B matches
- A* matches all strings that have any number of strings (even 0) that A matches, one after another

001*

{00,001,0011,00111,001111,--- }

0*1*
= \$ 1,000 /hy/ with my # of () followed
= \$ 6,100 chy, that don't cake 10)

001*

{00, 001, 0011, 00111, ...}

0*1*

Any number of 0's followed by any number of 1's

 $(0 \cup 1) \ 0 \ (0 \cup 1) \ 0$ matcher \$ 0000,0010, 1000, 1010) all hiney they, (0*1*)*(0011* als. works 50,13* all broman Muys

$$(0 \cup 1) \ 0 \ (0 \cup 1) \ 0$$

{0000, 0010, 1000, 1010}

All binary strings

```
(0 ∪ 1)* 0110 (0 ∪ 1)*

Siray stays that contain sequence
0110
```

$$(0 \cup 1)$$
* $0110 (0 \cup 1)$ *

Binary strings that contain "0110"

$$(00 \cup 11)*(01010 \cup 10001)(0 \cup 1)*$$

Binary strings that begin with pairs of characters followed by "01010" or "10001"

il appeiable

of the hybest princip, their consort

there hybest princip, their consort

Regular Expressions in Practice

- Used to define the "tokens": e.g., legal variable names, keywords in programming languages and compilers
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

```
Pattern p = Pattern.compile("a*b");
  Matcher m = p.matcher("aaaaab");
 boolean b = m.matches();
   [01] a 0 or a 1 ^ start of string $ end of string
   [0-9] any single digit \setminus. period \setminus, comma \setminus- minus
          any single character
   ab a followed by b
                                (AB)
   (a b) a or b
                              (A \cup B)
   a? zero or one of a (A \cup \varepsilon)
                                A*
   a* zero or more of a
   a+ one or more of a AA*
• e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+$
       General form of decimal number e.g. 9.12 or -9,8 (Europe)
```