Lecture 18: Structural Induction, Regular expressions

Recursive definition

- Basis step: Some specific elements are in S /
- *Recursive step:* Given some existing named elements in S some new objects constructed from these named elements are also in S.
- Every element in S follows from the basis step and a finite number of recursive steps

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

- An alphabet Σ is any finite set of characters
- The set Σ* of strings over the alphabet Σ is defined by
 - Basis: $\varepsilon \in \Sigma$ (ε is the empty string w/ no chars)/
 - **Recursive:** if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

Functions on Recursively Defined Sets (on Σ^*)

```
Length:
       len(\varepsilon) = 0
len(wa) = 1 + len(w) for w \in \Sigma^*, a \in \Sigma
Reversal:
        \varepsilon^{R} = \varepsilon
       (wa)^{R} = aw^{R} for w \in \Sigma^{*}, a \in \Sigma
Concatenation:
       \mathbf{x} \bullet \mathbf{\varepsilon} = \mathbf{x} for \mathbf{x} \in \Sigma^*
       x \bullet wa = (x \bullet w)a for x \in \Sigma^*, a \in \Sigma
Number of c's in a string:
       \#_{c}(\varepsilon) = 0
       #_{c}(wc) = #_{c}(w) + 1 \text{ for } w \in \Sigma^{*}#_{c}(wa) = #_{c}(w) \text{ for } w \in \Sigma^{*}, a \in \Sigma, a \neq c
```

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base (ase $(g=\varepsilon)$: Let $x \in \mathbb{Z}^{+}$ be arbitran. (Proje $P(\varepsilon)$)

YXES

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$ **Inductive Step:** Goal: Show that P(wa) is true for every $a \in \Sigma$

$$let \times C \Sigma^{t} S c ultimar.$$

$$len(X \cdot (ua)) = len((x \cdot u)a) \qquad delm t .$$

$$= len((x \cdot u) + len(u) + l \qquad len t .$$

$$= len(x) + len(u) + l \qquad len t .$$

Since X wer advition, this prover p(wa).

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let $a \in \Sigma$. Let $x \in \Sigma^*$. Then $len(x \bullet wa) = len((x \bullet w)a)$ by defn of \bullet

= len(x•w)+1 by defn of len

= len(x)+len(w)+1 **by I.H.**

= len(x)+len(wa) by defn of len

Therefore len(x•wa)= len(x)+len(wa) for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction $len(x \bullet y) = len(x) + len(y)$ for all $x, y \in \Sigma^*$

Rooted Binary Trees

- Basis:
 is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

• size
$$\left(\begin{array}{c} \mathbf{T}_{1} \\ \mathbf{T}_{1} \\ \mathbf{T}_{2} \\ \mathbf{T}_$$

• height(•) = 0 • height $\left(\underbrace{\overline{T_1}, \overline{T_2}}_{T_1} \right) = 1 + \max\{\text{height}(T_1), \text{height}(T_2)\}$

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

1. Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.

Base
$$(ux_{\ell}(\cdot))^{\prime}$$

 $Sizc(\cdot) = 1$
 $hes_{1}ht(\cdot) = 0$
 $bt \qquad 5s \qquad 2ht(\cdot)ri - 1 = 2^{sri} - 1$
 $= 2^{\prime} - (1 = 2 - 1)$
 $Since, 1 \leq 1, P(\cdot)$ is true.

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(\bullet)=1, height(\bullet)=0 and 1=2¹-1=2⁰⁺¹-1 so P(\bullet) is true.

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1}$

- **1.** Let P(T) be "size(T) $\leq 2^{\text{height}(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0 and $1=2^{1}-1=2^{0+1}-1$ so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .
- 4. Inductive Step:

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0 and 1=2¹-1=2⁰⁺¹-1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .
- 4. Inductive Step: By defn, size(T_1) = 1+size(T_1)+size(T_2) $\leq 1+2^{\text{height}(T_1)+1} - 1+2^{\text{height}(T_2)+1} - 1$ by IH for T_1 and T_2 $= 2^{\text{height}(T_1)+1} + 2^{\text{height}(T_2)+1} - 1$ $\leq 2(2^{\max(\text{height}(T_1),\text{height}(T_2))+1}) - 1$ $= 2(2^{\text{height}(A)}) - 1 = 2^{\text{height}(A)+1} - 1$ which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.

- Sets of strings that satisfy special properties are called *languages*. Examples:
 - English sentences
 - Syntactically correct Java/C/C++ programs
 - $-\Sigma^* = \text{All strings over alphabet } \Sigma$
 - Palindromes over Σ
 - Binary strings that don't have a 0 after a 1
 - Legal variable names. keywords in Java/C/C++
 - Binary strings with an equal # of O's and 1's

Regular expressions over $\boldsymbol{\Sigma}$

• Basis:

 \emptyset , ε are regular expressions

a is a regular expression for any $a \in \Sigma$

- Recursive step:
 - If A and B are regular expressions then so are: $(A \cup B)$ (AB) $\Delta^{(*)}$

- ε matches the empty string
- *a* matches the one character string *a*
- $(A \cup B)$ matches all strings that either A matches or B matches (or both)
- (AB) matches all strings that have a first part that
 A matches followed by a second part that B matches
- A* matches all strings that have any number of strings (even 0) that A matches, one after another

 $x_{1} \times z_{2}$ X, K2×3 -

001*

100,001,0011,00111,]

DU-- D11---1

001*

 $\{00, 001, 0011, 00111, ...\}$

0*1*

Any number of 0's followed by any number of 1's

(**0** ∪ **1**) **0** (**0** ∪ **1**) **0** Jours 0010, 1050, 10102

(**0** ∪ **1**) **0** (**0** ∪ **1**) **0**

 $\{0000, 0010, 1000, 1010\}$

(0*1*)*

All binary strings

(**0** ∪ **1**)* **0110** (**0** ∪ **1**)*

 $(00 \cup 11)*(01010 \cup 10001)(0 \cup 1)*$

 $(0 \cup 1)^*$ 0110 $(0 \cup 1)^*$

Binary strings that contain "0110"

$(00 \cup 11)$ * (01010 \cup 10001) (0 \cup 1)*

Binary strings that begin with pairs of characters followed by "01010" or "10001"

Regular Expressions in Practice

- Used to define the "tokens": e.g., legal variable names, keywords in programming languages and compilers
- Used in grep, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!

Regular Expressions in Java

- Pattern p = Pattern.compile("a*b");
- Matcher m = p.matcher("aaaaab");
- boolean b = m.matches();

[01] a 0 or a 1 ^ start of string \$ end of string
[0-9] any single digit \. period \, comma \- minus
any single character

- ab a followed by b (AB)
- (a|b) a or b
 a? zero or one of a
 a* zero or more of a

 $(A \cup B)$ $(A \cup E)$ A^*

a lu m?

a+ one or more of a **AA***

e.g. ^[\-+]?[0-9]*(\.|\,)?[0-9]+\$
 General form of decimal number e.g. 9.12 or -9,8 (Europe)