CSE 311: Foundations of Computing

Lecture 18: Structural Induction, Regular expressions

OH NO! THE KILLER || BUT TO FIND THEM WE'D HAVE TO SEARCH
MUST HAVE FOULOWED| | THROUGH 200 MB OF EMAILS LODKING FOR
HER ON VACATION! || SOMETHING FORMATTED LIKE AN ADDRESS!

/
X{% ;_ a&-‘— IT5 HOPELESS!
: T KNOWREGUAR L=
i

5 Ja

q
& M

Recursive Definitions of Sets: General Form

Recursive definition

— Basis step: Some specific elements are in S /

— Recursive step: Given some existing named
elements in S some new objects constructed
from these named elements are also in S.

— Exclusion rule: Every element in S follows from

the basis step and a finite number of recursive
steps

Structural Induction

How to prove V x € S, P(x) is true:

C—

Base Case: Show that P(u) is true for all specific
elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that P is true for some
arbitrary values of each of the existing named
elements mentioned in the Recursive step

Inductive Step: Prove that P(w) holds for each of the
new elements w constructed in the Recursive step
using the named elements mentioned in the Inductive
Hypothesis

Conclude thatV x € S, P(x)

Strings

* An alphabet X is any finite set of characters

* The set 2 * of strings over the alphabet X is
defined by

— Basis: £ € 2 (¢ is the empty string w/ no chars)
— Recursive: ifw € 2*,a € 2, then wa € 2%

T ¢ e sel & <l Shogc

A Sy i oo siee

S o et 2T ($)

L

Functions on Recursively Defined Sets (on >%)

Length:
len(e) =0
len(wa) =1 + len(w) for w € >* aex

—

Reversal:
ceR=¢g
(wa)R=awRforwe X, aeX

Concatenation:
xee=xforxe X* —

xewa=(xew)laforx€X*, aeX
e

Number of ¢’s in a string:
#(g)=0
(wc)=# (w)+1forweX” 7

#(wa)=#(w)forweX" a€ B

Claim: len(xey) = len(x) + len(y) for all x,y € =*

Let P(y) be “len(xey) = len(x) + len(y) for all x € 3*".
We prove P(y) for all y € X by structural induction. ﬁ 7%

%ub’b (av€v (3$£> | Lk« CT_Z'\' Le, el ey

<()rsJJ~ W(@)\
lenly-€) = [ealx) Ak < b o

ol = (e (O Fo o shorn
= (anle) vla(g) denf A

L2~

/
g;’"LU\ =S N‘(t“"\f(/\?(‘vaﬁ/ 5 \
Lo (i) =0 prorer L2
Lip (56> = t ﬂ,(,./(&\

Claim: len(xey) = len(x) + len(y) for all x,y €X*

Let P(y) be “len(xey) = len(x) + len(y) forallx e X*".
We prove P(y) for all y € ¥* by structural induction.

Base Case: y=¢c. For any x € 2%, len(xe €) = len(x) = len(x) + len(g)
since len(g)=0. Therefore P(g) is true

Claim: len(xey) = len(x) + len(y) for all x,y €X*

Let P(y) Be “len(xey) = len(x) + len(y) forallx e X*".
We prove P(y) for all y € ¥* by structural induction.

Base Case: y=¢c. For any x € 2%, len(xe €) = len(x) = len(x) + len(g)
since len(g)=0. Therefore P(g) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
wE X")T
Inductive Step: |Goal: Show that P(wa) is true for every a € X

lMX (owy)' \e,w((\ww>0~) dlbn
- Lo (-) b <t Lo~
= ‘W(¥>s—\w~(¢3 + | LI
R PGV WA P QR b o>l

g,,f\(zb X, wiy 4—-(‘5'#"’%47 M ¢ pfb""‘/ p\go)-

Claim: len(xey) = len(x) + len(y) for all x,y €X*

Let P(y) be “len(xey) = len(x) + len(y) forallx e X*".
We prove P(y) for all y € ¥* by structural induction.

Base Case: y=¢c. For any x € 2%, len(xe €) = len(x) = len(x) + len(g)
since len(g)=0. Therefore P(g) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
weEX”

Inductive Step: |Goal: Show that P(wa) is true for every a € X

Leta € X. Let x € £*. Then len(xewa) = len((x®w)a) by defn of e
= |len(xew)+1 by defn of len
= len(x)+len(w)+1 by I.H.
= len(x)+len(wa) by defn of len

Therefore len(xewa)= len(x)+len(wa) for all x € X*, so P(wa) is true.

So, by induction len(xey) = len(x) + len(y) for all x,y € X~

Rooted Binary Trees

* Basis:
* Recursive step:

v
Is a rooted binary tree

Defining Functions on Rooted Binary Trees

Claim: For every rooted binary tree T, size(T) < 2heightM +1 _ 1

1. Let P(T) be “size(T) < 2heighttN+1_1" We prove P(T) for all rooted binary
trees T by structural induction.

Bowe Coce ()
§tlcﬁl) = |
Lu.)}LJ/(\ - 0O
k/b’k 5s , 2[,,_1/(-5{(. zotl—(

Claim: For every rooted binary tree T, size(T) < 2heightM +1 _ 1

1. Let P(T) be “size(T) < 2heieht(M+1_1”, We prove P(T) for all rooted binary
trees T by structural induction.

2. Base Case: size(®)=1, height(*)=0 and 1=21-1=2%1-1 so P(e) is true.

Claim: For every rooted binary tree T, size(T) < 2height(MEL (4

1. Let P(T) bmWe prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(*)=0 and 1=21-1=2%1-1 so P(e) is true.
3. Inductive Hypothesis: Suppose th@ and P(T)) are true for some
rooted binary trees T, and T,.

4. Inductive Step: Goal: Prove P(T/\T—\
S (T)= leyind(3) Fsia(r,) b of st
FCC) * \ H T,
[y g j(rz)’“()”,\
© (T, :
= 2 (MY gl
2(2 ‘ZW M“)'“(’QKB ~
\ = Z(ZM\oZLIr(C)IL‘_;(TZ)ZH > — ’V(S/‘/’”
D ZW{T) —l _ _dl7)

L(TY = peef WK, Wl > % =1 _—

Claim: For every rooted binary tree T, size(T) < 2heightM +1 _ 1

1. Let P(T) be “size(T) < 2heieht(M+1_1”, We prove P(T) for all rooted binary
trees T by structural induction.
2. Base Case: size(®)=1, height(*)=0 and 1=21-1=2%1-1 so P(e) is true.
3. Inductive Hypothesis: Suppose that P(T,) and P(T,) are true for some
rooted binary trees T, and T,.

4. Inductive Step: Goal: Prove P(\r/\)._l

..............

by IH for T, and T,
— 2height(T1)+1+2height(T2)+1 -1

< 2(2max(height(Tl),height(TZ))+1) -1

— 5(oheight(£ %)) _ 1 = pheight(£ %)+l _
2(2height(£ 2,)) - 1 = 2height(£ %)+1 1

which is what we wanted to show.
5. So, the P(T) is true for all rooted bin. trees by structural induction.

Languages: Sets of Strings

* Sets of strings that satisfy special properties
are called languages. Examples:

— English sentences

— Syntactically correct Java/C/C++ programs

— >" = All strings over alphabet >

— Palindromes over X

— Binary strings that don’t have a O aftera 1

— Legal variable names. keywords in Java/C/C++
— Binary strings with an equal # of O’'s and 1’s

Regular Expressions

Regular expressions over X
* Basis:
0¥ £ are regular expressions
_ais aregular expression foranya € X

* Recursive step:
— If A and B are regular expressions then so are:
(A U B)
(AB)
AN

Each Regular Expression is a “pattern”

& matches the empty string
a matches the one character string a

(e/u__B) matches all strings that either A matches
or B matches (or both)

(A:_B}) matches all strings that have a first part that
A matches followed by a second part that B
matches 5@

A* matches all strings that have any number of

strings (even 0) that A matches, one after

another N3

X<
X(\(—&\‘3 -

K. pare £

Examples

001 *

?oo[OS> OO0l 6> et
! ' !

O*1*
s~ O (f --- (

Examples

001*

{00, 001, 0011, 00111, ...}

O*1*

Any number of O’s followed by any number of 1’s

Examples

v’
Oul)oO0oulo

s oSS ao (o loso, lol(_S?.
|)

(O*1*)*

Examples

Oul)oO0oulo

{0000, 0010, 1000, 1010}

(O*1*)*

All binary strings

Examples

(Ou1)*0110(0uv 1)*

(00U 11)* (01010 U 10001) (O L 1)*

Examples

(Ou 1)* 0110 (0 U 1)*

Binary strings that contain “0110”

(00U 11)* (01010 U 10001) (O L 1)*

Binary strings that begin with pairs of characters
followed by “01010” or “10001”

Regular Expressions in Practice

* Used to define the “tokens”: e.g., legal variable names,
keywords in programming languages and compilers

* Usedin grep, a program that does pattern matching
searches in UNIX/LINUX

e Pattern matching using regular expressions is an essential
feature of PHP

* We can use regular expressions in programs to process
strings!

Regular Expressions in Java

 Pattern p = Pattern.compile("a*b");
* Matcher m = p.matcher("aaaaab");
* boolean b = m.matches();

[01] aOoral “startofstring $ end of string

[0-9] anysingledigit \. period \, comma \- minus

any single character

ab a followed by b (AB)

(al|b) aorb (A U B)

a? zero or one of a (AU g)

ax* zero or more of a A* L f(/\' M?-
a+ one or more of a AA*

* eg ~[\-+]1?[0-91*(\.|\,)?[0-9]+$
General form of decimal number e.g. 9.12 or -9,8 (Europe)

