Recursive Definitions of Sets: General Form

Recursive definition

- **Basis step**: Some specific elements are in S.
- **Recursive step**: Given some existing named elements in S, some new objects constructed from these named elements are also in S.
- **Exclusion rule**: Every element in S follows from the basis step and a finite number of recursive steps.
Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that $P(u)$ is true for all specific elements u of S mentioned in the *Basis step*

Inductive Hypothesis: Assume that P is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that $P(w)$ holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$
Strings

- An alphabet \(\Sigma \) is any finite set of characters

- The set \(\Sigma^* \) of strings over the alphabet \(\Sigma \) is defined by
 - **Basis:** \(\varepsilon \in \Sigma \) (\(\varepsilon \) is the empty string w/ no chars)
 - **Recursive:** if \(w \in \Sigma^* \), \(a \in \Sigma \), then \(wa \in \Sigma^* \)

\(\Sigma^* \) is the set of all strings
\[a_1 a_2 \ldots a_n \] for some \(n \geq 0 \) and \(a_i \in \Sigma \). (4i)
Functions on Recursively Defined Sets (on Σ^*)

Length:

\[
\begin{align*}
\text{len}(\varepsilon) &= 0 \\
\text{len}(wa) &= 1 + \text{len}(w) \quad \text{for } w \in \Sigma^*, \ a \in \Sigma
\end{align*}
\]

Reversal:

\[
\begin{align*}
\varepsilon^R &= \varepsilon \\
(wa)^R &= aw^R \quad \text{for } w \in \Sigma^*, \ a \in \Sigma
\end{align*}
\]

Concatenation:

\[
\begin{align*}
x \cdot \varepsilon &= x \quad \text{for } x \in \Sigma^* \\
x \cdot wa &= (x \cdot w)a \quad \text{for } x \in \Sigma^*, \ a \in \Sigma
\end{align*}
\]

Number of c’s in a string:

\[
\begin{align*}
\#_c(\varepsilon) &= 0 \\
\#_c wc &= \#_c w + 1 \quad \text{for } w \in \Sigma^* \\
\#_c wa &= \#_c w \quad \text{for } w \in \Sigma^*, \ a \in \Sigma, \ a \neq c
\end{align*}
\]
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

\[
\begin{align*}
\text{Base case (y=ε):} & \quad \text{Let } x \in \Sigma^* \text{ be arbitrary.} \\
\quad \text{(Prove } P(\varepsilon)) & \\
\text{Proof:} & \\
\text{Since } x \text{ was arbitrary, this proves } P(\varepsilon). \\
\end{align*}
\]

\[
\begin{align*}
\text{len}(\varepsilon) &= 0 & \text{defn of } \text{len} \\
\text{len}(wx) &= 1 + \text{len}(w) \\
\end{align*}
\]
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case: \(y = \varepsilon \). For any \(x \in \Sigma^* \), \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \) since \(\text{len}(\varepsilon) = 0 \). Therefore \(P(\varepsilon) \) is true.
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Let \(P(y) \) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x \in \Sigma^* \)”.
We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case: \(y = \varepsilon \). For any \(x \in \Sigma^* \), \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \) since \(\text{len}(\varepsilon) = 0 \). Therefore \(P(\varepsilon) \) is true.

Inductive Hypothesis: Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

Inductive Step: Goal: Show that \(P(wa) \) is true for every \(a \in \Sigma \)

Let \(x \in \Sigma^* \) be arbitrary.

\[
\text{len}(x \cdot (wa)) = \text{len}((x \cdot w)a) \\
= \text{len}(x \cdot w) + 1 \\
= \text{len}(x) + \text{len}(w) + 1 \\
= \text{len}(x) + \text{len}(wa)
\]

Since \(x \) was arbitrary, thus prove \(P(\varepsilon) \).
Claim: \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)\) for all \(x, y \in \Sigma^*\)

Let \(P(y)\) be “\(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)\) for all \(x \in \Sigma^*\)”.

We prove \(P(y)\) for all \(y \in \Sigma^*\) by structural induction.

Base Case: \(y = \varepsilon\). For any \(x \in \Sigma^*\), \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon)\) since \(\text{len}(\varepsilon) = 0\). Therefore \(P(\varepsilon)\) is true.

Inductive Hypothesis: Assume that \(P(w)\) is true for some arbitrary \(w \in \Sigma^*\).

Inductive Step: **Goal: Show that \(P(wa)\) is true for every \(a \in \Sigma\)**

Let \(a \in \Sigma\). Let \(x \in \Sigma^*\). Then \(\text{len}(x \cdot wa) = \text{len}((x \cdot w)a)\) by defn of \(\cdot\)

\[
= \text{len}(x \cdot w) + 1 \quad \text{by defn of len} \\
= \text{len}(x) + \text{len}(w) + 1 \quad \text{by I.H.} \\
= \text{len}(x) + \text{len}(wa) \quad \text{by defn of len}
\]

Therefore \(\text{len}(x \cdot wa) = \text{len}(x) + \text{len}(wa)\) for all \(x \in \Sigma^*\), so \(P(wa)\) is true.

So, by induction \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)\) for all \(x, y \in \Sigma^*\)
Rooted Binary Trees

- **Basis:** is a rooted binary tree
- **Recursive step:**

If T_1 and T_2 are rooted binary trees, then also is a rooted binary tree.
Defining Functions on Rooted Binary Trees

- \(\text{size}(\cdot) = 1 \)
- \(\text{size}(T_1 + T_2) = 1 + \text{size}(T_1) + \text{size}(T_2) \)
- \(\text{height}(\cdot) = 0 \)
- \(\text{height}(T_1 + T_2) = 1 + \max\{\text{height}(T_1), \text{height}(T_2)\} \)
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

\begin{align*}
\text{Base case } (\cdot): \\
\text{size}(\cdot) &= 1 \\
\text{height}(\cdot) &= 0.
\end{align*}

\begin{align*}
\text{So, } 2^{\text{height}(\cdot) + 1} - 1 &= 2^0 - 1 \\
&= 2^1 - 1 = 2 - 1 = 1 \\
\text{Since, } 1 \leq 1, P(\cdot) \text{ is true.}
\end{align*}
Claim: For every rooted binary tree \(T \), \(\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1 \)

1. Let \(P(T) \) be “\(\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1 \)”. We prove \(P(T) \) for all rooted binary trees \(T \) by structural induction.
2. Base Case: \(\text{size}(\bullet) = 1 \), \(\text{height}(\bullet) = 0 \) and \(1 = 2^{1} - 1 = 2^{0+1} - 1 \) so \(P(\bullet) \) is true.
Claim: For every rooted binary tree \(T \), \(\text{size}(T) \leq 2^{\text{height}(T)}+1 - 1 \)

1. Let \(P(T) \) be “\(\text{size}(T) \leq 2^{\text{height}(T)}+1 - 1 \)”. We prove \(P(T) \) for all rooted binary trees \(T \) by structural induction.

2. Base Case: \(\text{size}(\bullet)=1 \), \(\text{height}(\bullet)=0 \) and \(1=2^{1-1}=2^{0+1-1} \) so \(P(\bullet) \) is true.

3. Inductive Hypothesis: Suppose that \(P(T_1) \) and \(P(T_2) \) are true for some rooted binary trees \(T_1 \) and \(T_2 \).

4. Inductive Step: Goal: Prove \(P() \leq 1+2^{\text{height}(T_1)+1}+2^{\text{height}(T_2)+1}-1 \) by IH for \(T_1 \) and \(T_2 \)

\[
\text{size}(T) = \text{size}(T_1) + \text{size}(T_2)
\]

\[
\leq 1 + 2^{\text{height}(T_1)+1} + \text{size}(T_2)
\]

\[
\leq 1 + 2^{\text{height}(T_1)+1} + 2^{\text{height}(T_2)+1} - 1
\]

\[
= 2 \left(2^{\text{height}(T_1)} + 2^{\text{height}(T_2)} \right) - 1
\]

\[
= 2 \left(2 \cdot 2^{\max\{\text{height}(T_1), \text{height}(T_2)\}} \right) - 1
\]

\[
= 2 \left(2 \cdot 2^{\text{height}(T_1) + 1} \right) - 1
\]

\[
= 2 \cdot 2^{\text{height}(T)} - 1 = 2^{\text{height}(T)}+1 - 1
\]

\[
\text{height}(T) = \max\{\text{height}(T_1), \text{height}(T_2)\} + 1
\]

So, the \(P(T) \) is true for all rooted bin. trees by structural induction.
Claim: For every rooted binary tree T, $\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$

1. Let $P(T)$ be “$\text{size}(T) \leq 2^{\text{height}(T)}+1-1$”. We prove $P(T)$ for all rooted binary trees T by structural induction.

2. Base Case: $\text{size}(\bullet)=1$, $\text{height}(\bullet)=0$ and $1=2^{1-1}=2^{0+1-1}$ so $P(\bullet)$ is true.

3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2.

4. Inductive Step: **Goal: Prove $P(T)$**.

 By defn, $\text{size}(T) = \text{size}(T_1) + \text{size}(T_2)$

 $\leq 1 + 2^{\text{height}(T_1)+1} - 1 + 2^{\text{height}(T_2)+1} - 1$

 by IH for T_1 and T_2

 $= 2^{\text{height}(T_1)+1} + 2^{\text{height}(T_2)+1} - 1$

 $\leq 2(2^{\max(\text{height}(T_1),\text{height}(T_2))+1}) - 1$

 $= 2(2^{\text{height}(T)}) - 1 = 2^{\text{height}(T)+1} - 1$

 which is what we wanted to show.

5. So, the $P(T)$ is true for all rooted bin. trees by structural induction.
Languages: Sets of Strings

• Sets of strings that satisfy special properties are called *languages*. Examples:
 – English sentences
 – Syntactically correct Java/C/C++ programs
 – $\Sigma^* = \text{All strings over alphabet } \Sigma$
 – Palindromes over Σ
 – Binary strings that don’t have a 0 after a 1
 – Legal variable names. keywords in Java/C/C++
 – Binary strings with an equal # of 0’s and 1’s
Regular Expressions

Regular expressions over Σ

- **Basis:**
 - \emptyset, ε are regular expressions
 - a is a regular expression for any $a \in \Sigma$

- **Recursive step:**
 - If A and B are regular expressions then so are:
 - $(A \cup B)$
 - (AB)
 - A^*
Each Regular Expression is a “pattern”

\(\varepsilon \) matches the **empty string**

\(a \) matches the one character string \(a \)

\((A \cup B) \) matches all strings that either \(A \) matches or \(B \) matches (or both)

\((AB) \) matches all strings that have a first part that \(A \) matches followed by a second part that \(B \) matches

\(A^* \) matches all strings that have any number of strings (even 0) that \(A \) matches, one after another
Examples

001*

\{00, 001, \ldots \}

0*1*

0*11* ... 1
Examples

001^*

$\{00, 001, 0011, 00111, \ldots\}$

0^*1^*

Any number of 0’s followed by any number of 1’s
Examples

\[(0 \cup 1) 0 (0 \cup 1) 0\]

\{(0*1*)^*\}

all strings of 0\^* + 1\^*.
Examples

\[(0 \cup 1) \cdot 0 \cdot (0 \cup 1) \cdot 0\]

\{0000, 0010, 1000, 1010\}

\[(0*1*)^*\]

All binary strings
Examples

\((0 \cup 1)^* \ 0110 \ 0 \cup 1)^*\)

\((00 \cup 11)^* (01010 \cup 10001) (0 \cup 1)^*\)
Examples

\((0 \cup 1)^* \; 0110 \; (0 \cup 1)^*\)

Binary strings that contain “0110”

\((00 \cup 11)^* \; (01010 \cup 10001) \; (0 \cup 1)^*\)

Binary strings that begin with pairs of characters followed by “01010” or “10001”
Regular Expressions in Practice

- Used to define the “tokens”: e.g., legal variable names, keywords in programming languages and compilers
- Used in `grep`, a program that does pattern matching searches in UNIX/LINUX
- Pattern matching using regular expressions is an essential feature of PHP
- We can use regular expressions in programs to process strings!
Regular Expressions in Java

- Pattern p = Pattern.compile("a*b");
- Matcher m = p.matcher("aaaaab");
- boolean b = m.matches();

\[
\begin{align*}
[01] & \text{ a 0 or a 1 } ^ \text{ start of string } \$ \text{ end of string} \\
[0-9] & \text{ any single digit } \ \cdot \ \text{ period } \ \ , \ \text{ comma } \ \ \ - \ \text{ minus} \\
. & \text{ any single character} \\
ab & \text{ a followed by b } \ (AB) \\
(a \mid b) & \text{ a or b } \ (A \cup B) \\
a? & \text{ zero or one of a } \ (A \cup \varepsilon) \\
a* & \text{ zero or more of a } \ A^* \\
a+ & \text{ one or more of a } \ AA^* \\
\end{align*}
\]

- e.g. \(^{[-+]}?[0-9]*(\ . \ | \ \ ,)?[0-9]+\$ \ \\
 General form of decimal number e.g. 9.12 or -9,8 (Europe)\]