
CSE 311: Foundations of Computing

Lecture 17:  Recursively Defined Sets &                    
Structural Induction



Recursive Definition of Sets

Recursive definition of set S
• Basis Step: 0 S
• Recursive Step: If x S, then x + 2 S
• Exclusion Rule: Every element in S follows from 

the basis step and a finite number of recursive 
steps.

We need the exclusion rule because otherwise 
S= would satisfy the other two parts.  However, 
we won’t always write it down on these slides.



Recursive Definitions of Sets

Basis:  6 S, 15 S
Recursive: If x,y S, then x+y S

Basis:  [1, 1, 0] S, [0, 1, 1] S
Recursive: If [x, y, z] S, then [αx, αy, αz] S for any α

If [x1, y1, z1] S and [x2, y2, z2] S, then
[x1 + x2, y1 + y2, z1 + z2] S.

Number of form 3n for n ≥ 0:



Recursive Definitions of Sets

Basis:  6 S, 15 S
Recursive: If x,y S, then x+y S

Basis:  [1, 1, 0] S, [0, 1, 1] S
Recursive: If [x, y, z] S, then [αx, αy, αz] S for any α

If [x1, y1, z1] S and [x2, y2, z2] S, then
[x1 + x2, y1 + y2, z1 + z2] S.

Number of form 3n for n ≥ 0:
Basis: 1 S
Recursive: If x S, then 3x S.



Recursive Definitions of Sets: General Form

Recursive definition

– Basis step: Some specific elements are in S
– Recursive step: Given some existing named 

elements in S some new objects constructed 
from these named elements are also in S.

– Exclusion rule:  Every element in S follows from 
the basis step and a finite number of recursive 
steps



Strings

• An alphabet  is any finite set of characters

• The set * of strings over the alphabet  is 
defined by

– Basis:   ( is the empty string w/ no chars)

– Recursive: if  *,  , then  *



Palindromes

Palindromes are strings that are the same 
backwards and forwards

Basis: 

is a palindrome and any  is a palindrome

Recursive step:

If is a palindrome then is a palindrome for

every 



All Binary Strings with no 1’s before 0’s



All Binary Strings with no 1’s before 0’s

Basis:
S

Recursive:
If x S then 0x S
If x S then x1 S



Functions on Recursively Defined Sets (on *)

Length:
len( ) = 0
len(wa) = 1 + len(w) for w *, a 

Reversal:
R = 

(wa)R = awR for w *, a 

Concatenation:
x • = x for x *

x • wa = (x • w)a for x *, w *, a 

Number of c’s in a string:
#c( ) = 0
#c(wc) = #c(w) + 1 for w *

#c(wa) = #c(w) for w *, a , a ≠ c



Rooted Binary Trees

• Basis:  •    is a rooted binary tree

• Recursive step: 

If                and                are rooted binary trees,

then                      also is a rooted binary tree.   

T1 T2

T1
T2



Defining Functions on Rooted Binary Trees

• size(•) = 1

• size ( ) = 1 + size(T1) + size(T2)

• height(•) = 0

• height ( )=1 + max{height(T1), height(T2)}

T1 T2

T1 T2



Structural Induction

How to prove is true:

Base Case: Show that is true for all specific 
elements of mentioned in the Basis step

Inductive Hypothesis:  Assume that is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that holds for each of the 
new elements constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that 



Structural Induction
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Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of 
structural induction:

Recursive definition of 
Basis: 0 
Recursive step:  If then

Structural induction follows from ordinary 
induction:

Define to be “for all that can be 
constructed in at most

recursive steps, is true.”



Using Structural Induction

• Let be given by…

– Basis: 
– Recursive:  if then

Claim:  Every element of is divisible by .



Claim:  Every element of is divisible by .

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3by induction 3|x for all x S.

Basis: 
Recursive:  if then



Claim:  Every element of is divisible by .

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 
for some arbitrary x,y S

4. Inductive Step:  Goal:  Show P(x+y)
Since P(x) is true, 3|x and so x=3m for some integer m and

Basis: 
Recursive:  if then



Claim:  Every element of is divisible by .

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 
for some arbitrary x,y S

4. Inductive Step:  Goal:  Show P(x+y)
Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.      
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).
Hence P(x+y) is true.

5. Therefore by induction 3|x for all x S.

Basis: 
Recursive:  if then



Claim: len(x•y) = len(x) + len(y) for all x,y *

Let P(y) be “len(x•y) = len(x) + len(y) for all x * ”.          
We prove P(y) for all y * by structural induction.



Let P(y) be “len(x•y) = len(x) + len(y) for all x * ” .   
We prove P(y) for all y * by structural induction.

Base Case: y= . For any x *,  len(x• ) = len(x) = len(x) + len( )     
since len( )=0.   Therefore P( ) is true

Claim: len(x•y) = len(x) + len(y) for all x,y *



Let P(y) be “len(x•y) = len(x) + len(y) for all x * ” .   
We prove P(y) for all y * by structural induction.

Base Case: y= . For any x *,  len(x• ) = len(x) = len(x) + len( )     
since len( )=0.   Therefore P( ) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w *

Inductive Step: Goal: Show that P(wa) is true for every a 

Claim: len(x•y) = len(x) + len(y) for all x,y *



Let P(y) be “len(x•y) = len(x) + len(y) for all x * ” .   
We prove P(y) for all y * by structural induction.

Base Case: y= . For any x *,  len(x• ) = len(x) = len(x) + len( )     
since len( )=0.   Therefore P( ) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w *

Inductive Step: Goal: Show that P(wa) is true for every a 

Let a . Let x *. Then len(x•wa) = len((x•w)a) by defn of •
=  len(x•w)+1 by defn of len
= len(x)+len(w)+1  by I.H.
= len(x)+len(wa) by defn of len

Therefore len(x•wa)= len(x)+len(wa) for all x *, so P(wa) is true.

So, by induction len(x•y) = len(x) + len(y) for all x,y *

Claim: len(x•y) = len(x) + len(y) for all x,y *



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 
rooted binary trees T1 and T2.

4 by IH for T1 and T2

≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height(      ))–1 ≤ 2height(            )+1 –1

which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.
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3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 
rooted binary trees T1 and T2.

4. Inductive Step:             Goal:  Prove P( ).
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Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 
rooted binary trees T1 and T2.

4. Inductive Step:             Goal:  Prove P( ).

By defn, size(             ) =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

by IH for T1 and T2

≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height(      ))–1 ≤ 2height(            )+1 –1

which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.


