
CSE 311: Foundations of Computing

Lecture 17:  Recursively Defined Sets &                    
Structural Induction



Recursive Definition of Sets

Recursive definition of set S
• Basis Step: 0 S
• Recursive Step: If x S, then x + 2 S
• Exclusion Rule: Every element in S follows from 

the basis step and a finite number of recursive 
steps.

We need the exclusion rule because otherwise 
S= would satisfy the other two parts.  However, 
we won’t always write it down on these slides.



Recursive Definitions of Sets

Basis:  6 S, 15 S
Recursive: If x,y S, then x+y S

Basis:  [1, 1, 0] S, [0, 1, 1] S
Recursive: If [x, y, z] S, then [αx, αy, αz] S for any α

If [x1, y1, z1] S and [x2, y2, z2] S, then
[x1 + x2, y1 + y2, z1 + z2] S.

Number of form 3n for n ≥ 0:



Recursive Definitions of Sets

Basis:  6 S, 15 S
Recursive: If x,y S, then x+y S

Basis:  [1, 1, 0] S, [0, 1, 1] S
Recursive: If [x, y, z] S, then [αx, αy, αz] S for any α

If [x1, y1, z1] S and [x2, y2, z2] S, then
[x1 + x2, y1 + y2, z1 + z2] S.

Number of form 3n for n ≥ 0:
Basis: 1 S
Recursive: If x S, then 3x S.



Recursive Definitions of Sets: General Form

Recursive definition

– Basis step: Some specific elements are in S
– Recursive step: Given some existing named 

elements in S some new objects constructed 
from these named elements are also in S.

– Exclusion rule:  Every element in S follows from 
the basis step and a finite number of recursive 
steps



Strings

• An alphabet  is any finite set of characters

• The set * of strings over the alphabet  is 
defined by

– Basis:   ( is the empty string w/ no chars)

– Recursive: if  *,  , then  *



Palindromes

Palindromes are strings that are the same 
backwards and forwards

Basis: 

is a palindrome and any  is a palindrome

Recursive step:

If is a palindrome then is a palindrome for

every 



All Binary Strings with no 1’s before 0’s



All Binary Strings with no 1’s before 0’s

Basis:
S

Recursive:
If x S then 0x S
If x S then x1 S



Functions on Recursively Defined Sets (on *)

Length:
len( ) = 0
len(wa) = 1 + len(w) for w *, a 

Reversal:
R = 

(wa)R = awR for w *, a 

Concatenation:
x • = x for x *

x • wa = (x • w)a for x *, w *, a 

Number of c’s in a string:
#c( ) = 0
#c(wc) = #c(w) + 1 for w *

#c(wa) = #c(w) for w *, a , a ≠ c



Rooted Binary Trees

• Basis:  •    is a rooted binary tree

• Recursive step: 

If                and                are rooted binary trees,

then                      also is a rooted binary tree.   

T1 T2

T1
T2



Defining Functions on Rooted Binary Trees

• size(•) = 1

• size ( ) = 1 + size(T1) + size(T2)

• height(•) = 0

• height ( )=1 + max{height(T1), height(T2)}

T1 T2

T1 T2



Structural Induction

How to prove is true:

Base Case: Show that is true for all specific 
elements of mentioned in the Basis step

Inductive Hypothesis:  Assume that is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that holds for each of the 
new elements constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that 



Structural Induction

How to prove is true:

Base Case: Show that is true for all specific 
elements of mentioned in the Basis step

Inductive Hypothesis:  Assume that is true for some 
arbitrary values of each of the existing named 
elements mentioned in the Recursive step

Inductive Step: Prove that holds for each of the 
new elements constructed in the Recursive step
using the named elements mentioned in the Inductive 
Hypothesis

Conclude that 



Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of 
structural induction:

Recursive definition of 
Basis: 0 
Recursive step:  If then

Structural induction follows from ordinary 
induction:

Define to be “for all that can be 
constructed in at most

recursive steps, is true.”



Using Structural Induction

• Let be given by…

– Basis: 
– Recursive:  if then

Claim:  Every element of is divisible by .



Claim:  Every element of is divisible by .

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3by induction 3|x for all x S.

Basis: 
Recursive:  if then



Claim:  Every element of is divisible by .

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 
for some arbitrary x,y S

4. Inductive Step:  Goal:  Show P(x+y)
Since P(x) is true, 3|x and so x=3m for some integer m and

Basis: 
Recursive:  if then



Claim:  Every element of is divisible by .

1. Let P(x) be “3|x”.  We prove that P(x) is true for all x S by  
structural induction.

2. Base Case: 3|6 and 3|15 so P(6) and P(15) are true

3. Inductive Hypothesis:  Suppose that P(x) and P(y) are true 
for some arbitrary x,y S

4. Inductive Step:  Goal:  Show P(x+y)
Since P(x) is true, 3|x and so x=3m for some integer m and
since P(y) is true, 3|y and so y=3n for some integer n.      
Therefore x+y=3m+3n=3(m+n) and thus 3|(x+y).
Hence P(x+y) is true.

5. Therefore by induction 3|x for all x S.

Basis: 
Recursive:  if then



Claim: len(x•y) = len(x) + len(y) for all x,y *

Let P(y) be “len(x•y) = len(x) + len(y) for all x * ”.          
We prove P(y) for all y * by structural induction.



Let P(y) be “len(x•y) = len(x) + len(y) for all x * ” .   
We prove P(y) for all y * by structural induction.

Base Case: y= . For any x *,  len(x• ) = len(x) = len(x) + len( )     
since len( )=0.   Therefore P( ) is true

Claim: len(x•y) = len(x) + len(y) for all x,y *



Let P(y) be “len(x•y) = len(x) + len(y) for all x * ” .   
We prove P(y) for all y * by structural induction.

Base Case: y= . For any x *,  len(x• ) = len(x) = len(x) + len( )     
since len( )=0.   Therefore P( ) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w *

Inductive Step: Goal: Show that P(wa) is true for every a 

Claim: len(x•y) = len(x) + len(y) for all x,y *



Let P(y) be “len(x•y) = len(x) + len(y) for all x * ” .   
We prove P(y) for all y * by structural induction.

Base Case: y= . For any x *,  len(x• ) = len(x) = len(x) + len( )     
since len( )=0.   Therefore P( ) is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary
w *

Inductive Step: Goal: Show that P(wa) is true for every a 

Let a . Let x *. Then len(x•wa) = len((x•w)a) by defn of •
=  len(x•w)+1 by defn of len
= len(x)+len(w)+1  by I.H.
= len(x)+len(wa) by defn of len

Therefore len(x•wa)= len(x)+len(wa) for all x *, so P(wa) is true.

So, by induction len(x•y) = len(x) + len(y) for all x,y *

Claim: len(x•y) = len(x) + len(y) for all x,y *



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 
rooted binary trees T1 and T2.

4 by IH for T1 and T2

≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height(      ))–1 ≤ 2height(            )+1 –1

which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 
rooted binary trees T1 and T2.

4. Inductive Step:             Goal:  Prove P( ).

≤ 1+2height(T1)+1–1+2height(T2)+1-1                    
by IH for T1 and T2

≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height(      ))–1 ≤ 2height(            )+1 –1

which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.



Claim: For every rooted binary tree T, size(T) ≤ 2height(T) + 1 - 1

1. Let P(T) be “size(T) ≤ 2height(T)+1–1”.  We prove P(T) for all rooted binary 
trees T by structural induction.

2. Base Case: size(•)=1, height(•)=0 and 1=21–1=20+1–1 so P(•) is true.

3. Inductive Hypothesis: Suppose that P(T1) and P(T2) are true for some 
rooted binary trees T1 and T2.

4. Inductive Step:             Goal:  Prove P( ).

By defn, size(             ) =1+size(T1)+size(T2)
≤ 1+2height(T1)+1–1+2height(T2)+1-1                    

by IH for T1 and T2

≤ 2height(T1)+1+2height(T2)+1–1
≤ 2(2max(height(T1),height(T2))+1)–1
≤ 2(2height(      ))–1 ≤ 2height(            )+1 –1

which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.


