CSE 311: Foundations of Computing

Lecture 17: Recursively Defined Sets & Structural Induction

Recursive definition of set S

- Basis Step: $0 \in S$
- Recursive Step: If $x \in S$, then $x + 2 \notin S$
- Exclusion Rule: Every element in S follows from the basis step and a finite number of recursive steps.

We need the exclusion rule because otherwise $S=\mathbb{N}$ would satisfy the other two parts. However, we won't always write it down on these slides.

Recursive Definitions of Sets

Basis:
$$6 \in S, 15 \in S$$

Recursive: If $x, y \in S$, then $x+y \in S$
 $(a, + W_m)$
Basis: $[1, 1, 0] \in S, [0, 1, 1] \in S$
Recursive: If $[x, y, z] \in S$, then $[\alpha x, \alpha y, \alpha z] \in S$ for any $\alpha \in \mathbb{R}$
If $[x_1, y_1, z_1] \in S$ and $[x_2, y_2, z_2] \in S$, then
 $[x_1 + x_2, y_1 + y_2, z_1 + z_2] \in S$. Unnert-word addition
 (a, a, b) $\forall a \in \mathbb{R}$.
Number of form 3^n for $n \ge 0$: $(0, b, b)$ $\forall b \in \mathbb{R}$.
 $T \in S$, $[x \in S]$, $[x \in S]$, $[x_1 + x_2, y_1 + y_2, z_1 + z_2] \in S$.

Recursive Definitions of Sets

Basis: $6 \in S, 15 \in S$ Recursive:If $x, y \in S$, then $x+y \in S$

Basis: $[1, 1, 0] \in S, [0, 1, 1] \in S$ Recursive: If $[x, y, z] \in S$, then $[\alpha x, \alpha y, \alpha z] \in S$ for any $\alpha \in \mathbb{R}$ If $[x_1, y_1, z_1] \in S$ and $[x_2, y_2, z_2] \in S$, then $[x_1 + x_2, y_1 + y_2, z_1 + z_2] \in S$.

Number of form 3^n for $n \ge 0$: Basis: $1 \in S$ Recursive: If $x \in S$, then $3x \in S$.

Recursive definition

- Basis step: Some specific elements are in S
- Recursive step: Given some existing named elements in S some new objects constructed from these named elements are also in S.
- Every element in S follows from the basis step and a finite number of recursive steps

- An alphabet Σ is any finite set of characters
- The set Σ* of strings over the alphabet Σ is defined by
 - Basis: $\varepsilon \in \Sigma^{*}(\varepsilon \text{ is the empty string w/ no chars})$
 - Recursive: if $w \in \Sigma^*$, $a \in \Sigma$, then $wa \in \Sigma^*$

quain an EZ

E, Ea, = Q, , Q, Q2, ...

9, Q2 - 9n

Palindromes

Palindromes are strings that are the same backwards and forwards

All Binary Strings with no 1's before 0's

 $Bary: EES = {0, 13}$ Remove: It x ES, OXES E $\xi, \emptyset, \dots, D^{n}$ 061,010 Ol rn20.

All Binary Strings with no 1's before 0's

Basis: $\epsilon \in S$ Recursive: If $x \in S$, then $0x \in S$ If $x \in S$, then $x1 \in S$

Functions on Recursively Defined Sets (on Σ^*)	
Length:	
$len(\varepsilon) = 0$	2 جــــ
len(wa) = 1 + len(w) for w $\in \Sigma^*$, a $\in \Sigma$	wa t
Reversal: $\varepsilon^{R} = \varepsilon$	$(b_{c})^{R}$
$(\underline{wa})^{R} = a\underline{w}^{R}$ for $w \in \Sigma^{*}$, $a \in \Sigma$	$ab)c)^{r} = c(ab)^{r}$
Concatenation:	$= ((ba^{\mu}))$
$x \bullet \varepsilon = x$ for $x \in \Sigma^*$	$= cb(za)^{k}$
$x \bullet wa = (x \bullet w)a$ for $x \in \Sigma^*$, $w \in \Sigma^*$, a	$\in \Sigma = c b (a s^{k})$
Number of c's in a string:	$= C b a \epsilon$
$\#_{c}(\varepsilon) = 0$	= cba
$figure$ $\widetilde{\#}_{c}(wc) = \#_{c}(w) + 1$ for $w \in \Sigma^{*}$	
$ = \#_c(wa) = \#_c(w) $ for $w \in \Sigma^*$, $a \in \Sigma$, $a \neq c$	>

Rooted Binary Trees

- Basis:
 is a rooted binary tree
- Recursive step:

Defining Functions on Rooted Binary Trees

• size(•) = 1

• size
$$\left(\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right) = 1 + \text{size}(\mathbf{T}_1) + \text{size}(\mathbf{T}_2)$$

• height(•) = 0

Structural Induction

How to prove $\forall x \in S, P(x)$ is true:

Base Case: Show that P(u) is true for all specific elements u of S mentioned in the Basis step

Inductive Hypothesis: Assume that *P* is true for some arbitrary values of *each* of the existing named elements mentioned in the *Recursive step*

Inductive Step: Prove that P(w) holds for each of the new elements w constructed in the *Recursive step* using the named elements mentioned in the Inductive Hypothesis

Conclude that $\forall x \in S, P(x)$

Conclude that $\forall x \in S, P(x)$

Structural Induction vs. Ordinary Induction

Ordinary induction is a special case of structural induction:

Recursive definition of $\ensuremath{\mathbb{N}}$

Basis: $0 \in \mathbb{N}$

Recursive step: If $k \in \mathbb{N}$ then $k + 1 \in \mathbb{N}$

Structural induction follows from ordinary induction: Define Q(n) to be "for all $x \in S$ that can be constructed in at most n recursive steps, P(x) is true."

Using Structural Induction

- Let *S* be given by...
 - **Basis:** $6 \in S$; $15 \in S$;
 - **Recursive:** if $x, y \in S$ then $x + y \in S$.

Claim: Every element of *S* is divisible by 3.

Claim: Every element of *S* is divisible by 3.

Vres.

1. Let P(x) be "3|x". We prove that P(x) is true for all $x \in S$ by structural induction.

2. Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true

Basis: $6 \in S$; $15 \in S$; **Recursive:** if $x, y \in S$ then $x + y \in S$

Claim: Every element of S is divisible by 3.

- **1.** Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3|6 and 3|15 so P(6) and P(15) are true
- **3.** Inductive Hypothesis: Suppose that P(x) and P(y) are true for some arbitrary $x, y \in S$

4. Inductive Ste

Recursive: (if $x, y \in S$) then $x + y \in S$

Claim: Every element of *S* is divisible by 3.

- **1.** Let P(x) be "3 | x". We prove that P(x) is true for all $x \in S$ by structural induction.
- **2.** Base Case: 3 | 6 and 3 | 15 so P(6) and P(15) are true
- **3. Inductive Hypothesis:** Suppose that P(x) and P(y) are true for some arbitrary $x,y \in S$
- **4. Inductive Step:** Goal: Show P(x+y)

Since P(x) is true, 3 | x and so x=3m for some integer m and since P(y) is true, 3 | y and so y=3n for some integer n. Therefore x+y=3m+3n=3(m+n) and thus 3 | (x+y). Hence P(x+y) is true.

5. Therefore by induction 3 | x for all $x \in S$.

Basis: $6 \in S$; $15 \in S$; **Recursive:** if $x, y \in S$ then $x + y \in S$

Claim: $len(x \bullet y) = len(x) + len(y)$ for all $x, y \in \Sigma^*$

Let P(y) be "len(x•y) = len(x) + len(y) for all x $\in \Sigma^*$ ". We prove P(y) for all y $\in \Sigma^*$ by structural induction.

D

Even lose:
$$ler(x \cdot \varepsilon) = ler(x)$$
 by definition
 $= ler(x) + 0$
 $= ler(x) + ler(\varepsilon)$ definition
this prover $R(\varepsilon)$.
 $\varepsilon \in \mathbb{Z}^{+}$
 $\omega \varepsilon \in \mathbb{Z}^{+}$

|ln(z) = 0 len(wa) = len(w) + 1. $\chi \cdot z = \chi \quad \chi \cdot (wz) = (x \cdot w)z.$ Claim: len(x•y) = len(x) + len(y) for all x, y $\in \Sigma^*$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true

Claim: len(x•y) = len(x) + len(y) for all $x, y \in \Sigma^*$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since len(ε)=0. Therefore P(ε) is true y=wa **Inductive Hypothesis:** Assume that P(w) is true for some arbitrary $w \in \Sigma^*$ **Inductive Step:** Goal: Show that P(wa) is true for every $a \in \Sigma$ Let vESt be crown $(m(\chi \cdot (wa)) = len((\chi \cdot w) a)$ defen of le $= (m(x \cdot s) + 1)$ = len(x) + len(n), = len(x) + len(n),by 117. det of u

Claim: len(x•y) = len(x) + len(y) for all $x, y \in \Sigma^*$

Let P(y) be "len(x•y) = len(x) + len(y) for all $x \in \Sigma^*$ ". We prove P(y) for all $y \in \Sigma^*$ by structural induction.

Base Case: $y = \varepsilon$. For any $x \in \Sigma^*$, $len(x \bullet \varepsilon) = len(x) = len(x) + len(\varepsilon)$ since $len(\varepsilon)=0$. Therefore $P(\varepsilon)$ is true

Inductive Hypothesis: Assume that P(w) is true for some arbitrary $w \in \Sigma^*$

Inductive Step: Goal: Show that P(wa) is true for every $a \in \Sigma$

Let $a \in \Sigma$. Let $x \in \Sigma^*$. Then $len(x \bullet wa) = len((x \bullet w)a)$ by defn of \bullet

= len(x•w)+1 by defn of len

= len(x)+len(w)+1 **by I.H.**

= len(x)+len(wa) by defn of len

Therefore len(x•wa)= len(x)+len(wa) for all $x \in \Sigma^*$, so P(wa) is true.

So, by induction $len(x \bullet y) = len(x) + len(y)$ for all $x, y \in \Sigma^*$

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0 and $1=2^{1}-1=2^{0+1}-1$ so P(•) is true.

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0 and 1=2¹-1=2⁰⁺¹-1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .
- 4. Inductive Step:

Goal: Prove P(

Claim: For every rooted binary tree T, size(T) $\leq 2^{\text{height}(T) + 1} - 1$

- **1.** Let P(T) be "size(T) $\leq 2^{height(T)+1}-1$ ". We prove P(T) for all rooted binary trees T by structural induction.
- **2.** Base Case: size(•)=1, height(•)=0 and 1=2¹-1=2⁰⁺¹-1 so P(•) is true.
- 3. Inductive Hypothesis: Suppose that $P(T_1)$ and $P(T_2)$ are true for some rooted binary trees T_1 and T_2 .
- 4. Inductive Step: By defn, size(T_1) $=1+size(T_1)+size(T_2)$ $\leq 1+2^{height(T_1)+1}-1+2^{height(T_2)+1}-1$ by IH for T_1 and T_2 $\leq 2^{height(T_1)+1}+2^{height(T_2)+1}-1$ $\leq 2(2^{max(height(T_1),height(T_2))+1})-1$ $\leq 2(2^{height(A)})-1 \leq 2^{height(A)}+1-1$ which is what we wanted to show.

5. So, the P(T) is true for all rooted bin. trees by structural induction.