CSE 311: Foundations of Computing

Lecture 16: Recursion & Strong Induction
Applications: Fibonacci & Euclid




Midterm

A week today (Monday, May 7) in class
 Closed book, closed notes
— You will get lists of inference rules & equivalences

* Covers material up to end of ordinary induction.

* Practice problems & practice midterm on the
website

— Solutions later this week

 Prof. Beame will run a review session
Sunday, May 6, 3:30-5:30 pm in EEB 105.



More Recursive Definitions

Suppose that h: N — R. S(art) = hlnn)

S(
Then we have familiar summation notation: e5tn)

S2oh(D) =h(0) j
Z?@h(i) =h(n+1) +Xioh(i) forn =0
g gi e O AT YA
There is also product notation:
?=0 h(i) — h(O)

M LIh@i) = h(n + 1);]’[’;0 h(i)forn >0

Sh) { S16)= (o)



Fibonacci Numbers

fo=0
fi=1
fn =fn_1 +fn_2 for alan 2
— — nN-2 2 O .




Strong Inductive Proofs In 5 Easy Steps

1. “‘Let P(n) be... . We will show that P(n) is true for all
integers n = b by strong induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis: /
Assume that for some arbitrary integer k > b/
P(j) is true for every integer j from b to k" «—
4. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using I.H. (that P(b), ..., P(k) are true)
and point out where you are using it. o
(Don’t assume P(k + 1) !1)

5. “Conclusion: P(n) is true for all integers n = b”



Bounding Fibonaccil: f,, < 2" foralln >0
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Bounding Fibonaccil: f,, < 2" foralln >0

1. Let P(n) be “f,<2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.

2. Base Case: f,=0 < 1= 2° so P(0) is true.
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fo=0 fi1=1
fn=fn-1+fn foralln > 2




Bounding Fibonaccil: f,, < 2" foralln >0

1.

W N

Let P(n) be “f, <2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.
Base Case: f,=0 < 1= 2° so P(0) is true.

Inductive i i i o[hesis: Assume that for some arbitrary
integefk P(j) is true for every integer j from O to k.

Inductive Step:| Goal: Show P(k+1); that is, f,,, < 2!
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Bounding Fibonaccil: f,, < 2" foralln >0

1.

W N

Let P(n) be “f, <2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.

Base Case: f,=0 < 1= 2° so P(0) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k >0, P(j) is true for every integer j from 0 to k.

Inductive Step:| Goal: Show P(k+1); that is, f,,, < 2k
Case k+1 =1:
Case k+1 > 2:

fo=0 fi1=1
fn=fn-1+fn foralln > 2




Bounding Fibonaccil: f,, < 2" foralln >0

1.

W N

5. Therefore by strong induction,

Let P(n) be “f, <2"”. We prove that P(n) is true for all
integers n > 0 by strong induction.

Base Case: f,=0 < 1= 2° so P(0) is true.

Inductive Hypothesis: Assume that for some arbitrary

integerk 2 0, P(j) is true for every integer j from O to k.
Inductive Step:| Goal: Show P(k+1); that is, f,,, < 2k

ZCase k+1=1: Then f,=1<2=21s0oP(k+1) is true here./
Case k+1 > 2: Thenf,,, =f + f,_, by definition
< 2¥+ 2k1py the IH since k-1 >0
< 2k4 2k = 2.2k = 2kl
so P(k+1) is true in this case.
These are the only cases so P(k+1) follows.

. fo=0 fi1=1
f < 2" for all integers n 2 0. fn="Ffn1+ fno foralln=2




Bounding Fibonacci Il: £, = 2™/2~1 for all@
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Bounding Fibonacci ll: f, > 2"/2~1foralln > 2

1. Let P(n) be “f_ >2"/2-1", We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case: f,=f +f,=1 and 22-1=20=1 so P(2) is true.
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Bounding Fibonacci ll: f, > 2"/2~1foralln > 2

1.

W N

Let P(n) be “f_>2"2-1" We prove that P(n) is true for all
integers n > 2 by strong induction.

Base Case: f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1

No need for cases for the definition here:
fo,1=f +f_, since k+12>2
Now just want to apply the IH to get P(k) and P(k-1):
Problem: Though we can get P(k) since k > 2,
k-1 may only be 1 so we can’t conclude P(k-1)
Solution: Separate cases for when k-1=1 (or k+1=3).

fo=0 fi1=1
fn=fn-1+fn foralln > 2




Bounding Fibonacci ll: f, > 2"/2~1foralln > 2

1. Let P(n) be “f_ >2"/2-1", We prove that P(n) is true for all
integers n > 2 by strong induction.

2. Base Case: f,=f +f,=1 and 22-1=20=1 so P(2) is true.

3. Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1
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Bounding Fibonacci ll: f, > 2"/2~1foralln > 2

1. Let P(n) be “f_ >2"/2-1", We prove that P(n) is true for all
integers n > 2 by strong induction.

Base Case: f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.
4. Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(kt1)/2-1

Case k = 2: Then f,,,=f, =f,+f =2 > 212 =23/21=)(k1)/2-1
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Bounding Fibonacci ll: f, > 2"/2~1foralln > 2

1. Let P(n) be “f_ >2"/2-1", We prove that P(n) is true for all
integers n > 2 by strong induction.

Base Case: f,=f,+f,=1 and 2%2-1=20=1 so P(2) is true.
Inductive Hypothesis: Assume that for some arbitrary
integer k > 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:| Goal: Show P(k+1); that is, f,,, > 2(k+1)/2-1
Case k=2: Thenf, ,=f;=f,+f =22 21/2 = 93/2-1-9(k+1)/2 -1
Casek>3: f ., ,=f + f_, bydefinition

> 2k/2-1 4 2(k-1)/2-1 hy the IH since k-1 > 2
> 2(k-1)/2-1 4 (k-1)/2-1 = D(k-1)/2 = D(kt1)/2 -1

So P(k+1) is true in both cases.
5. Therefore by strong induction, f > 2"2-1 for all integers n > 0.

W N

fo=0 fi1=1
fn=fn-1+fn foralln > 2




Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm ta steps
for gcd(a,b) witha = b > 0. Then,a = f,,;1-

An informal way to get the idea: Consider an n step gcd

calculation starting with r_,,=a and r _=b: e =45 e g
a1 = Oalfn + Mg a =0C,... P éi(( v ! Cbtf\
o =0, tr _
T Gnafaa ¥ Too b = «Forallk>2,r _,=r.,, modr, (,/ )
eee AL’
r, = Qqf
2 1'1 VA o
7 - (\‘L'/L + rvt_z_

Now r, =2 1 and each g, must be > 1. If we replace all the
q’s by 1 and replace r, by 1, we can only reduce the r,s.
After that reduction, r =f, for every k.



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0. Then,a = f,,;.
— e

We go by strong induction on n.
Let P(n) be “gcd(a,b) with a > b>0 takes n steps — a > f.,” for

_

7 Base Case: n=1 If Euclid’s Algorithm on a, b witha > b >0 takes 1 step,

thenr some g, and a 2 b 2 1=f, and P(1) holds

\——_’

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true
for all integers js.t. 1 <j<k

Inductive Step: We want to show: if gcd(a,b) with a > b > 0 takes k+1 |
steps, thena >f,,,
S >
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Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true

for all integers js.t. 1 <j<k
Inductive Step: We want to show: if gcd(a,b) with a > b>0 takes k+1 steps,

thena>f,,, D

Now if k =1, the two steps of Euclid’s algorithm on a and b are
given by gcd(a,b)=gcd(b,c)=gcd(c,0)=c where

a=q,b tC 4 - CHes a D ‘L?,:J
—> b=qc
andc=amodb>0

Also, since a > b we must have g, > 1.

Soa=q,b+c2b+c21+1=2=F,=1,, as required.
T T1 T

1.3\




: : : L ler ol L
Running time of Euclid’s algorithm — 4, 7;
7

Induction Hypothesis: Suppose that for some integer k > 1, P(j) is true

for all integersjs.t. 1<j<k &

Inductive Step: We want to show: if gcd(a,b) with a > b>0 takes k+1 steps
thena>f,,, T

Next suppose that k > 2 so for the first three steps of Euclid’s
algorithm on a and b we have gcd(a,b)=gcd(b,c)=gcd(c,d) where
a=qub+tc— > gfvw Lot ,(; L,«,Qg

)b=qk©+d£/~p(7a Sl,pp L‘C S
_>c=q.,d+e (c=amodb,d=bmodc, e-cmoddandd )
By definition of mod we have b > c > d>O, gcd(b,c) takes k steps and

gcd(c,d) takes k-1 > 1 steps, so by the IH we have b > f,,, and c > f,.

Also, since a > b we must have q,,, > 1.

Soa=qb+c2b+c2f+f="1,,asrequired. G 2 Qq_a,
~— — —
L4 UL( )+ l
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Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm tak teps
for gcd(a, b) with a > b > 0. The@

Why does this help us bound the running time of Euclid’s
Algorithm?

=

oy

We already proved that f,, > 2"/2~1so f,,, = 2(n"1D/2

Therefore: if Euclid’s Algorithm takes n steps
for gcd(a,b) witha = b > 0
then @ > 2(n~1)/2 SClag, @)

so(n—1)/2<log,a orF <1+ Zlogzé
i.e., # of steps < twice the # of bits in a.




Recursive Definition of Sets

Recursive Definition
« Basis Step: 0 €S - -
 Recursive Step: If xe S,thenx+2€S

* Exclusion Rule: Every element in S follows from
basis steps and a finite number of recursive
steps.

—

o 2 9, L



Recursive Definitions of Sets

Basis: 6€S,15€S
Recursive: If x,y €S, thenx+y e S

-
Basis: [1,1,0]€S,[0,1,1]eS
Recursive: If [Xx, Y, z] €S, then [ax, ay, az] €S foranya € R
If [X4, ¥4, Z4] € S @nd [X,, Y5, Z,] € S, then
Xy + X5, Y1 TY,5, 2, +2Z,] ES.

Cac 5)

Powers of 3:



Recursive Definitions of Sets

Basis: 6€S,15€S
Recursive: If x,y €S, thenx+y e S

Basis: [1,1,0]€S,[0,1,1]€S
Recursive: If [Xx, Y, z] €S, then [ax, ay, az] €S
If [X4, ¥4, Z4] € S @nd [X,, Y5, Z,] € S, then
Xy + X5, Y1 TY,5, 2, +2Z,] ES.

Powers of 3:
Basis: 1 €S
Recursive: If X € S, then 3x € S.



Recursive Definitions of Sets: General Form

Recursive definition
— Basis step: Some specific elements are in S

— Recursive step: Given some existing named
elements in S some new objects constructed
from these named elements are also in S.

— Exclusion rule: Every element in S follows from
basis steps and a finite number of recursive
steps



Strings

* An alphabet X is any finite set of characters

* The set X* of strings over the alphabet X is
defined by

— Basis: € € 2 (€ is the empty string)
— Recursive: if w € 2*,a € 2, then wa € 2*



Palindromes

Palindromes are strings that are the same
backwards and forwards

Basis:
€ is a palindrome and any a € X is a palindrome

Recursive step:
If p is a palindrome then apa is a palindrome for
everya € X



All Binary Strings with no 1’s before O’s




All Binary Strings with no 1’s before O’s

Basis:
ceSs

Recursive:
If x € S, then Ox € S
If x € S, then x1 €S



Function Definitions on Recursively Defined Sets

Length:
len(€) =0
len(wa) =1+ len(w)forw €z, a€s

Reversal:
ER=E
(wa)R=awRforw €', a€z

Concatenation:
xeE=xforxey
xewa=(xew)aforx€3s, a€z



