
CSE 311: Foundations of Computing

Lecture 16:  Recursion & Strong Induction 
Applications: Fibonacci & Euclid 



Midterm

• A week today (Monday, May 7) in class

• Closed book, closed notes
– You will get lists of inference rules & equivalences

• Covers material up to end of ordinary induction.

• Practice problems & practice midterm on the 
website
– Solutions later this week

• Prof. Beame will run a review session                        
Sunday, May 6, 3:30-5:30 pm in EEB 105.



More Recursive Definitions

Suppose that .  

Then we have familiar summation notation: 

for 

There is also product notation:  

for 



Fibonacci Numbers

for all 



Strong Inductive Proofs In 5 Easy Steps

1. “Let be... . We will show that is true for all 
integers by strong induction.”

2. “Base Case:” Prove 

3. “Inductive Hypothesis:

Assume that for some arbitrary integer 

is true for every integer from to ”   

4. “Inductive Step:” Prove that is true:

Use the goal to figure out what you need. 

Make sure you are using I.H. (that are true)
and point out where you are using it.                           
(Don’t assume !!)

5. “Conclusion: is true for all integers ”



Bounding Fibonacci I:  for all 

𝟎 𝟏

𝒏 𝒏ି𝟏 𝒏ି𝟐 for all 



Bounding Fibonacci I:  for all 

1. Let P(n) be “fn < 2n ”.   We prove that P(n) is true for all 
integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.

3. Inductive Hypothesis:  Assume that for some arbitrary 
integer k ≥ 0, P(j) is true for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≤ 2k+1

Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.

Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

≤ 2k + 2k-1 by the IH
≤ 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true in this case.

5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

𝟎 𝟏

𝒏 𝒏ି𝟏 𝒏ି𝟐 for all 



Bounding Fibonacci I:  for all 

1. Let P(n) be “fn < 2n ”.   We prove that P(n) is true for all 
integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, P(j) is true for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.

Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

≤ 2k + 2k-1 by the IH
≤ 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true in this case.

5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

𝟎 𝟏

𝒏 𝒏ି𝟏 𝒏ି𝟐 for all 



Bounding Fibonacci I:  for all 

1. Let P(n) be “fn < 2n ”.   We prove that P(n) is true for all 
integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, P(j) is true for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

Case k+1 = 1:  Then f1 = 1 ≤ 21 so P(k+1) is true here.

Case k+1 ≥ 2: Then fk+1 = fk +  fk-1 by definition

≤ 2k + 2k-1 by the IH
≤ 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true in this case.

5.    Therefore by strong induction, fn ≤ 2n for all integers n ≥ 0.

𝟎 𝟏

𝒏 𝒏ି𝟏 𝒏ି𝟐 for all 



Bounding Fibonacci I:  for all 

1. Let P(n) be “fn < 2n ”.   We prove that P(n) is true for all 
integers n ≥ 0 by strong induction.

2. Base Case: f0=0 < 1= 20 so P(0) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 0, P(j) is true for every integer j from 0 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 < 2k+1

Case k+1 = 1:  Then f1 = 1 < 2 = 21 so P(k+1) is true here.

Case k+1 ≥ 2:  Then fk+1 = fk +  fk-1 by definition

< 2k + 2k-1 by the IH since k-1 ≥ 0
< 2k + 2k = 2∙2k  = 2k+1

so P(k+1) is true in this case.
These are the only cases so P(k+1) follows.

5. Therefore by strong induction, 
fn < 2n for all integers n ≥ 0. 𝟎 𝟏

𝒏 𝒏ି𝟏 𝒏ି𝟐 for all 



Bounding Fibonacci II:  for all 

𝟎 𝟏

𝒏 𝒏ି𝟏 𝒏ି𝟐 for all 



Bounding Fibonacci II:  for all 

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k+1 ≥ 4:    fk+1 = fk +  fk-1 by definition

≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2                  
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.

5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝟎 𝟏

𝒏 𝒏ି𝟏 𝒏ି𝟐 for all 



Bounding Fibonacci II:  for all 

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k+1 = 3:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k+1 ≥ 4:    fk+1 = fk +  fk-1 by definition

≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.

5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝟎 𝟏

𝒏 𝒏ି𝟏 𝒏ି𝟐 for all 

No need for cases for the definition here:
fk+1 = fk + fk-1  since k+1 ≥ 2

Now just want to apply the IH to get P(k) and P(k-1):
Problem:  Though we can get P(k) since k ≥ 2,

k-1 may only be 1 so we can’t conclude P(k-1)
Solution: Separate cases for when k-1=1 (or k+1=3).



Bounding Fibonacci II:  for all 

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k = 2:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k ≥ 3:    fk+1 = fk +  fk-1 by definition

≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.

5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝟎 𝟏

𝒏 𝒏ି𝟏 𝒏ି𝟐 for all 



Bounding Fibonacci II:  for all 

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k = 2:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k ≥ 3:   fk+1 = fk +  fk-1 by definition

≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2      
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.

5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝟎 𝟏

𝒏 𝒏ି𝟏 𝒏ି𝟐 for all 



Bounding Fibonacci II:  for all 

1. Let P(n) be “fn ≥ 2n/2 -1 ”.   We prove that P(n) is true for all 
integers n ≥ 2 by strong induction.

2. Base Case: f2 = f1 + f0 = 1  and 22/2 – 1 = 20 = 1 so P(2) is true.
3. Inductive Hypothesis:  Assume that for some arbitrary 

integer k ≥ 2, P(j) is true for every integer j from 2 to k.

4. Inductive Step:  Goal: Show P(k+1); that is, fk+1 ≥ 2(k+1)/2 -1

Case k = 2:  Then fk+1 = f3 = f2 + f1 =2 ≥ 21/2 = 23/2-1=2(k+1)/2 -1

Case k ≥ 3:    fk+1 = fk +  fk-1 by definition

≥ 2k/2-1 + 2(k-1)/2-1  by the IH since k-1 ≥ 2
≥ 2(k-1)/2-1 + 2(k-1)/2-1 = 2(k-1)/2 = 2(k+1)/2 -1

So P(k+1) is true in both cases.

5. Therefore by strong induction, fn ≥ 2n/2 -1 for all integers n ≥ 0.

𝟎 𝟏

𝒏 𝒏ି𝟏 𝒏ି𝟐 for all 



Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes steps

for with .  Then, .

An informal way to get the idea: Consider an n step gcd
calculation starting with rn+1=a and rn=b:

rn+1 =   qnrn +  rn-1
rn = qn-1rn-1 + rn-2

…
r3 =   q2r2 + r1
r2 =   q1r1

Now r1 ≥ 1 and each qk must be ≥ 1.    If we replace all the
qK’s by 1 and replace r1 by 1 , we can only reduce the rk’s.  
After that reduction, rk=fk for every k.

For all k ≥ 2, rk-1= rk+1 mod rk



Running time of Euclid’s algorithm

Theorem: Suppose that Euclid’s Algorithm takes steps
for with .  Then, .

We go by strong induction on n.  
Let P(n) be “gcd(a,b) with a ≥ b>0 takes n steps → a ≥ fn+1” for all n ≥ 1.  

Base Case: n=1 If Euclid’s Algorithm on a, b with a ≥ b > 0  takes 1 step, 
then a=q1b for some q1 and a ≥ b ≥ 1=f2 and P(1) holds

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 
for all integers j s.t. 1 ≤ j ≤ k

Inductive Step: We want to show: if gcd(a,b) with a ≥ b > 0 takes k+1 
steps, then a ≥ fk+2.



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 
for all integers j s.t. 1 ≤ j ≤ k 

Inductive Step: We want to show: if gcd(a,b) with a ≥ b>0 takes k+1 steps, 
then a ≥ fk+2.

Now if k =1, the two steps of Euclid’s algorithm on a and b are 
given by gcd(a,b)=gcd(b,c)=gcd(c,0)=c where

a = q2b  + c
b = q1c 

and c = a mod b > 0

Also, since a ≥ b we must have q2 ≥ 1. 

So a = q2b + c ≥ b + c ≥ 1+1 = 2 = f3 = fk+2 as required.



Running time of Euclid’s algorithm

Induction Hypothesis: Suppose that for some integer k ≥ 1, P(j) is true 
for all integers j s.t. 1 ≤ j ≤ k 

Inductive Step: We want to show: if gcd(a,b) with a ≥ b>0 takes k+1 steps, 
then a ≥ fk+2.

Next suppose that k ≥ 2 so for the first three steps of Euclid’s 
algorithm on a and b we have gcd(a,b)=gcd(b,c)=gcd(c,d) where

a = qk+1b + c
b  = qk c + d 
c  = qk-1d + e       (c = a mod b , d = b mod c , e = c mod d and d>0)

By definition of mod we have b > c > d>0, gcd(b,c) takes k steps and
gcd(c,d) takes k-1 ≥ 1 steps, so by the IH we have b ≥ fk+1 and c ≥ fk.

Also, since a ≥ b we must have qk+1 ≥ 1. 

So a = qk+1b + c ≥ b + c ≥ fk+1+ fk= fk+2 as required.



Running time of Euclid’s algorithm
Theorem: Suppose that Euclid’s Algorithm takes steps

for with .  Then, .

Why does this help us bound the running time of Euclid’s 
Algorithm?

We already proved that so 

Therefore: if Euclid’s Algorithm takes steps
for with 
then 

so or 
i.e., # of steps twice the # of bits in .



Recursive Definition of Sets

Recursive Definition

• Basis Step: 0 S

• Recursive Step: If x S, then x + 2 S

• Exclusion Rule: Every element in S follows from 
basis steps and a finite number of recursive 
steps.



Recursive Definitions of Sets

Basis:  6 S, 15 S
Recursive: If x,y S, then x+y S 

Basis:  [1, 1, 0] S, [0, 1, 1] S
Recursive: If [x, y, z] S, then [αx, αy, αz] S for any α

If [x1, y1, z1] S and [x2, y2, z2] S, then
[x1 + x2, y1 + y2, z1 + z2] S.

Powers of 3:



Recursive Definitions of Sets

Basis:  6 S, 15 S
Recursive: If x,y S, then x+y S 

Basis:  [1, 1, 0] S, [0, 1, 1] S
Recursive: If [x, y, z] S, then [αx, αy, αz] S

If [x1, y1, z1] S and [x2, y2, z2] S, then
[x1 + x2, y1 + y2, z1 + z2] S.

Powers of 3:
Basis: 1 S
Recursive: If x S, then 3x S.



Recursive Definitions of Sets: General Form

Recursive definition

– Basis step: Some specific elements are in 

– Recursive step: Given some existing named 
elements in some new objects constructed 
from these named elements are also in .

– Exclusion rule:  Every element in follows from 
basis steps and a finite number of recursive 
steps



Strings

• An alphabet  is any finite set of characters

• The set * of strings over the alphabet  is 
defined by

– Basis:   ( is the empty string)

– Recursive:  if  *,  , then  *



Palindromes

Palindromes are strings that are the same 
backwards and forwards

Basis: 

is a palindrome and any  is a palindrome

Recursive step:

If is a palindrome then is a palindrome for

every 



All Binary Strings with no 1’s before 0’s



All Binary Strings with no 1’s before 0’s

Basis: 

Recursive:
If x then 0x 
If x then x1 



Function Definitions on Recursively Defined Sets

Length:
len( ) = 0
len(wa) = 1 + len(w) for w Σ*, a Σ

Reversal:
R = 

(wa)R = awR for w Σ*, a Σ

Concatenation:
x • = x for x Σ*

x • wa = (x • w)a for x Σ*, a Σ


