CSE 311: Foundations of Computing

Lecture 15: Induction & Strong Induction




Inductive Proofs In 5 Easy Steps

. “Let P(n) be.... We will show that P(n) is true for all

integers n()iuctlon "
. “Base C Prove P (0 (L) =
ase Case: Prove P(0) \)k / p“w )

. “Inductive Hypothesis:
Assume P (k) is true for an arbitrary integer k = 0"
. “Inductive Step: ”@e?mt P@s true: \
Use the goal to figure out what you need.
Make sure you are using I.H. and point out where you are
using it. (Don’t assume P(k + 1) !!)
. “Conclusion: P(n) is true for all integers n = 0”




Induction: Changing the start line

 What if we want to prove that P(n) is true

for all integers n = b for some integer b?
A

* Define predicate Q(k) = P(k + b) for all k.
—Then VvnQ(n) =vn=>b P(n) O(s) = V(W

* Ordinary induction for Q:
— Prove Q(0) = P(b)

— Prove
vk (Q(k) — Q(k + 1)) = vk = b(P(k) — P(k + 1))



Inductive Proofs In 5 Easy Steps

. “Let P(n) be.... We will show that P(n) is true for all
integers n 2y induction.”
. “Base Case:” Prov@
. “Inductive Hypothesis:
Assume P (k) is true for an arbitrary integer k = b’
. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are
using it. (Don’'tassume P(k + 1) !1)

. “Conclusion: P(n) is true for all integers



Suppose that, for aII ] E N, we have a; <

Prove that a, - .- b, for aIW>\1ﬁ




Suppose that, for all i € N, we have a; < b;.
Prove that a1 an S bl bn for a" n 2 1.

1. LetP(n)be “a;:--a,, < by -+ b,”. We will show P(n) is true for

all integers n > 1 by induction.
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Suppose that, for all i € N, we have a; < b;.
Prove thata, ---a,, < b, --- b, foralln = 1.

1. LetP(n)be “a;:--a,, < by -+ b,”. We will show P(n) is true for
all integers n > 1 by induction.

2. Base Case (n=1): a; < b, is given, so P(1) is true.



DC /
Suppose that, for all i € N, we have a; < b;. ¥ \gis)

Prove that a, ---a,, < b, ---b,, foralln > 1. b b

1. LetP(n)be “a;:--a,, < by -+ b,”. We will show P(n) is true for
all integers n > 1 by induction.

2. Base Case (n=1): a; < b, is given, so P(1) is true.

Inductive Hypothesis: for an arbitrary integerk >1,
suppose that P(k) is true (i.e., “a; ---ay < by -+~ by”).

4. Inductive Step:

Goal: show P(k+1), i.e., “a; - ay4q1 < by bpiq
\?g/
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Suppose that, for all i € N, we have a; < b;.
Prove that a1 an S bl bn for a" n 2 1.

1. LetP(n)be “a;:--a,, < by -+ b,”. We will show P(n) is true for
all integers n > 1 by induction.

Base Case (n=1): a; < b, is given, so P(1) is true.

Inductive Hypothesis: for an arbitrary integerk >1,
suppose that P(k) is true (i.e., “a; ---ay < by -+~ by”).

4. Inductive Step:
Goal: show P(k+1), i.e., “a; - ay4q1 < by bpiq

From givens, we have a1 < bi4+1 (V Elim). Then,

A Appq = A1 A Ajesq show one more in “..."
< (b1 by )k 41 by IH
< by bybyiq by above

Therefore P(k+1) is true.
5. Thus P(n) is true for all integers n > 1, by induction.



Prove 3" > n? + 3 foralln > 2




Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.



Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2):



Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.

2. Base Case (n=2): 32=9>7=4+43=2%+3s0 P(2) is true.



Prove 3" > n? + 3 foralln > 2

1. Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.
2. Base Case (n=2): 32=9>7=4+43=2%+3s0 P(2) is true.
3. Inductive Hypothesis: for an arbitrary integer k > 2,
suppose that P(k) is true (i.e., “3% > k2+3").



Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all

integers n > 2 by induction.

Base Case (n=2): 3%2=9>7=4+3 =2°+3s0 P(2) is true.

Inductive Hypothesis: for an arbitrary integer k > 2,
suppose that P(k) is true (i.e., “3% > k2+3").

Inductive Step:

Goal: Show P(k+1), i.e. show 3%*1> (k+1)2+3




Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.
Base Case (n=2): 3%2=9>7=4+43=22+3s0 P(2) is true.

Inductive Hypothesis: for an arbitrary integer k > 2,
suppose that P(k) is true (i.e., “3% > k2+3").

Inductive Step: A
Goal: Show P(k+1), i.e. shoy 313 (k+1)2+3=k?+2k+4

\_/L : g__:)/% CZ(')
LZ?_ D ko LK > ><& 3

2
=8 k%43 2 2kt
23> (2l
72 kv A2 e e YU




Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.
Base Case (n=2): 3%2=9>7=4+3 =2°+3s0 P(2) is true.
Inductive Hypothesis: for an arbitrary integer k > 2,

suppose that P(k) is true (i.e., “3% > k2+3").

T

Inductive Step:
Goal: Show P(k+1), i.e. show 3%1 > (k+1)2+3=k2+2k+4

N——

| 31=3(3Y) @k
> 3(k2+3) by the IH /
=2hHg =7l q = L. g"fl
> k?+2k+4 = (k+1)%+3 since k > 1. 2

Therefore P(k+1) is true. 2 L
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Prove 3" > n? + 3 foralln > 2

1.

Let P(n) be “3" > n?+3”. We will show P(n) is true for all
integers n > 2 by induction.
Base Case (n=2): 3%2=9>7=4+3 =2°+3s0 P(2) is true.
Inductive Hypothesis: for an arbitrary integer k > 2,
suppose that P(k) is true (i.e., “3k > k2+3").
Inductive Step:
Goal: Show P(k+1), i.e. show 3%1 > (k+1)2+3=k2+2k+4
Jk+1 = 3(3k)

> 3(k%+3) by the IH

= k2+2k?+9

> k?+2k+4 = (k+1)%+3 since k > 1.
Therefore P(k+1) is true.

5. Thus P(n) is true for all integers n > 2, by induction.



Recall: Induction Rule of Inference

Domain: Natural Numbers P(0) v
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)-P(2) P(2)-P(3) P(3)-P(4) P(4)—P(5)
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Recall: Induction Rule of Inference

Domain: Natural Numbers P(0)
vk (P(k) — P(k + 1))

~Vn P(n)

How do the givens prove P(5)?

P(0)—P(1) P(1)—=P(2) P(2)—-P(3) P(3)—P(4) P(4)—P(5)

N N N N N
P(0) P(1) PR2) P@3) P& P

We made it harder than we needed to ...
When we proved P(2) we knew BOTH P(0) and P(1)
When we proved P(3) we knew P(0) and P(1) and P(2)
When we proved P(4) we knew P(0), P(1), P(2),P(3)
etc.

That’s the essence of the idea of Strong Induction.



Strong Induction

P(0) .

vk ((P(0) AP(1) AP(2) A+ AP(K)) - P(k + 1))

s Vn P(n)



Strong Induction

P(0) &9
e 3w 2 Qlier)
vk ((P(0) AP(1) AP(2) A+ AP(K)) - P(k + 1))

s Vn P(n)

—

L ——

Strong induction for P follows from ordinary induction for
where
Q(k) = P(O) ANP(I)APR2)A---ANP(k)

<

Note that Q(0) = P(0)and Q(k+ 1) = Q(k) )\ P(k + 1)
and Vn Q(n) = vn P(n)




Inductive Proofs In 5 Easy Steps

. “Let P(n) be.... We will show that P(n) is true for all
integers n = b by induction.”

. “Base Case:” Prove P(b)
. “Inductive Hypothesis:
Assume that for some arbitrary integer k = b,
P(k) is true”
. “Inductive Step:” Prove that P(k + 1) is true:
Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are
using it. (Don’'tassume P(k + 1) !1)

. “Conclusion: P(n) is true for all integers n = b”



Strong Inductive Proofs In 5 Easy Steps

1. “‘Let P(n) be... . We will show that P(n) is true for all
integers n = b by strong induction.”

2. “Base Case:” Prove P(b)
3. “Inductive Hypothesis:

Assume that for some arbitrary integer k = b,

P(j) is true for every integer j from bto k” €

4. “Inductive Step:” Prove that P(k + 1) is true:

Use the goal to figure out what you need.

Make sure you are using I.H. (that P(b), ..., P(k) are true)
and point out where you are using it.
(Don’t assume P(k + 1) !1)

5. “Conclusion: P(n) is true for all integers n = b”



Recall: Fundamental Theorem of Arithmetic

Every integer > 1 has a unique prime
factorization

48= 222243

591 = 3 + 197

45,523=45,523”-/

321050 =255 47 « 137
1.234.567.890 =2+ 3+ 35+ 3,607 * 3,803

We use strong induction to prove that a factorization into
primes exists, but not that it is unique.



Every integer = 2 is a product of primes.




Every integer = 2 is a product of primes.

1. Let P(n) be “nis a product of primes”. We will show that P(n) is true
for all integers n = 2 by strong induction.
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Every integer = 2 is a product of primes.

1. Let P(n) be “nis a product of primes”. We will show that P(n) is true
for all integers n = 2 by strong induction.
2. Base Case (n=2): 2is prime, so it is a (trivial) product of primes.
Therefore, P(2) is true.



Every integer = 2 is a product of primes.

1.

2.

Let P(n) be “n is a product of primes”. We will show that P(n) is true
for all integers n = 2 by strong induction.

Base Case (n=2): 2is prime, so it is a product of primes.
Therefore, P(2) is true.

Inductive Hyp: Suppose that, for an arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes

L by o po e Plesd) innsdb
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Every integer = 2 is a product of primes.

1.

2.

Let P(n) be “n is a product of primes”. We will show that P(n) is true
for all integers n = 2 by strong induction.

Base Case (n=2): 2is prime, so it is a product of primes.
Therefore, P(2) is true.

Inductive Hyp: Suppose that, for an arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes
Case: k+1 is prime: Then by definition k+1 is a product of primes




Every integer = 2 is a product of primes.

1.

2.

Let P(n) be “n is a product of primes”. We will show that P(n) is true
for all integers n = 2 by strong induction.

Base Case (n=2): 2is prime, so it is a product of primes.
Therefore, P(2) is true.

Inductive Hyp: Suppose that, for an arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:

Goal: Show P(k+1); i.e. k+1 is a product of primes

Case: k+1 is prime: Then by definition k+1 is a product of primes
Case: k+1 is composite: Then k+1=ab for some integers a and b
where 2 <a, b <k.




Every integer = 2 is a product of primes.

1.

2.

Let P(n) be “n is a product of primes”. We will show that P(n) is true

for all integers n = 2 by strong induction.

Base Case (n=2): 2is prime, so it is a product of primes.
Therefore, P(2) is true.

Inductive Hyp: Suppose that, for an arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes
Case: k+1 is prime: Then by definition k+1 is a product of primes

Case: k+1 is composite: Then k+1=ab for some integers a and b
where 2 <3, b < k. By our IH, P(a) and P(b) are true so we have
a=p,p,-p,and b=q,q,q,
for some primes p,,p,,..., P,, 41,95,---, U
Thus, k+1 =ab = p,p, :** p,q,0, *** 9, Which is a product of primes.




Every integer = 2 is a product of primes.

1. Let P(n) be “nis a product of primes”. We will show that P(n) is true
for all integers n = 2 by strong induction.
2. Base Case (n=2): 2is prime, so it is a product of primes.
Therefore, P(2) is true.

3. Inductive Hyp: Suppose that, for an arbitrary integer k > 2,
P(j) is true for every integer j between 2 and k

4. Inductive Step:
Goal: Show P(k+1); i.e. k+1 is a product of primes
Case: k+1 is prime: Then by definition k+1 is a product of primes

Case: k+1 is composite: Then k+1=ab for some integers a and b
where 2 <3, b < k. By our IH, P(a) and P(b) are true so we have
a=p,p,-p,and b=q,q,q,
for some primes p,,p,,..., P,, 41,95,---, U
Thus, k+1 =ab = p,p, :** p,q,0, *** 9, Which is a product of primes.
Since k > 1, one of these cases must happen and so P(k+1) is true:

5. Thus P(n) is true for all integers n = 2, by strong induction.




Strong Induction is particularly useful when...

...we need to analyze methods that on input k make
a recursive call for an input different from k — 1.

e.g.: Recursive Modular Exponentiation:

— For exponent k > 0 it made a recursive call with

exponent j = k/2 when k was evenorj =k — 1 when k
R
was odd.

éK &31@‘/‘/)/ - Zé 7
We won’t analyze this particular method by strong
induction, but we could.

However, we will use strong induction to analyze
other functions with recursive definitions.



Recursive definitions of functions

e F(0)=0;, Fn+1)=FMn)+ 1foralln = 0.

cnd =~
c G(0)=1, G(n+1)=2-G(n)foralln = 0.
Clo) = 2"

e 0!l=1, (n+1D!I=Mm+1) -n! foralln = 0.

—_—

AN (. - N\ ‘(l/\-(\" 2 - 0
e« H0)=1; Hn+1) =250 foralln > 0.
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Prove n! <n"foralln >1




Prove n! <n"foralln >1

1. Let P(n) be “n! <n". We will show that P(n) is true for all
integers n > 1 by induction.
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Prove n! <n"foralln >1

1. Let P(n) be “n! <n". We will show that P(n) is true for all
integers n > 1 by induction.

2. Base Case (n=1): 1!=1-0!=1-1=1=1%'so P(1) is true.



Prove n! <n"foralln >1

1.

Let P(n) be “n! < n". We will show that P(n) is true for all
integers n > 1 by induction.

Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.
Inductive Hypothesis: for an arbitrary k >=1,
suppose that P(k) is true (i.e., “k! < kk”).

~— .

i |

Inductive Step:
Goal: Show P(k+1), i.e. show (k+1)! < (k+1)*+2
S— __——
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Prove n! <n"foralln >1

1.

Let P(n) be “n! < n". We will show that P(n) is true for all
integers n > 1 by induction.
Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.
Inductive Hypothesis: for an arbitrary k >=1,

suppose that P(k) is true (i.e., “k! £ kX").

Inductive Step:
Goal: Show P(k+1), i.e. show (k+1)! < (k+1)*+2
(k+1)! = (k+1)-k! by definition of !

< (k+1)- kk by the IH
< (k+1)- (k+1)¢ by first ex. & k < k+1 for all k
— (k+1)k+1

Therefore P(k+1) is true.



Prove n! <n"foralln >1

1.

Let P(n) be “n! < n". We will show that P(n) is true for all
integers n > 1 by induction.
Base Case (n=1): 1!=1-0!=1-1=1=1'so P(1) is true.
Inductive Hypothesis: for an arbitrary k >=1,

suppose that P(k) is true (i.e., “k! £ kX").

Inductive Step:
Goal: Show P(k+1), i.e. show (k+1)! < (k+1)*+2
(k+1)! = (k+1)-k! by definition of !

< (k+1)- kk by the IH
< (k+1)- (k+1)¢ by first ex. & k < k+1 for all k
— (k+1)k+1

Therefore P(k+1) is true.

5. Thus P(n) is true for all n > 1, by induction.



