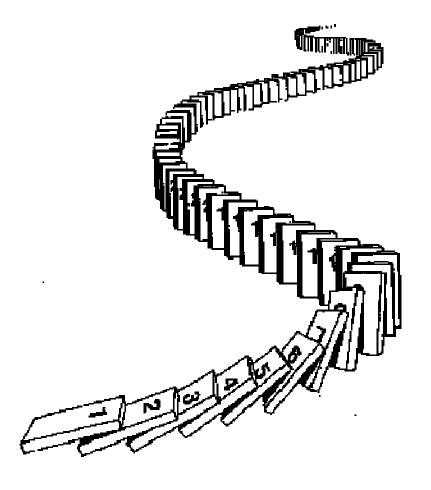
CSE 311: Foundations of Computing

Lecture 14: Induction

Honework 3 solutions
if you haven't got
then already.

How?
Bookon algebra identition
apply to rety too.

(But they don't help with
subsets)



Mathematical Induction

Method for proving statements about all natural numbers

- A new logical inference rule!
 - It only applies over the natural numbers
 - The idea is to use the special structure of the naturals to prove things more easily
- Particularly useful for reasoning about programs!

```
for(int i=0; i < n; n++) { ... }
```

• Show P(i) holds after i times through the loop

```
public int f(int x) {
    if (x == 0) { return 0; }
    else { return f(x - 1); }
}
```

• f(x) = x for all values of $x \ge 0$ naturally shown by induction.

Prove $\forall a, b, m > 0 \ \forall k \in \mathbb{N} \ (a \equiv b \pmod{m}) \rightarrow a^k \equiv b^k \pmod{m})$

Let $a, b, m > 0 \in \mathbb{Z}$ be arbitrary. Let $k \in \mathbb{N}$ be arbitrary. Suppose that $a \equiv b \pmod{m}$.

We know $(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^2 \equiv b^2 \pmod{m}$ by multiplying congruences. So, applying this repeatedly, we have:

$$(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^2 \equiv b^2 \pmod{m}$$
$$(a^2 \equiv b^2 \pmod{m} \land a \equiv b \pmod{m}) \rightarrow a^3 \equiv b^3 \pmod{m}$$

 $\left(a^{k-1} \equiv b^{k-1} \pmod{m} \land a \equiv b \pmod{m}\right) \to a^k \equiv b^k \pmod{m}$

The "..."s is a problem! We don't have a proof rule that allows us to say "do this over and over".

But there such a property of the natural numbers!

Domain: Natural Numbers

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

Induction Is A Rule of Inference

Domain: Natural Numbers

$$P(0)$$

$$\forall k \ (P(k) \to P(k+1))$$

$$\therefore \forall n \ P(n)$$

How do the givens prove P(5)?

Induction Is A Rule of Inference

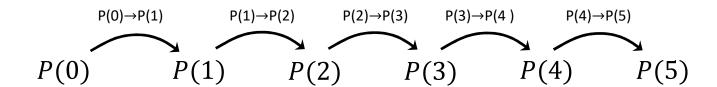
Domain: Natural Numbers

$$P(0)$$

$$\forall k \ (P(k) \to P(k+1))$$

$$\therefore \forall n \ P(n)$$

How do the givens prove P(5)?



First, we have P(0).

Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(0) \rightarrow P(1)$.

Since P(0) is true and $P(0) \rightarrow P(1)$, by Modus Ponens, P(1) is true.

Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(1) \rightarrow P(2)$.

Since P(1) is true and $P(1) \rightarrow P(2)$, by Modus Ponens, P(2) is true.

$$P(0)$$

$$\forall k \ (P(k) \rightarrow P(k+1))$$

$$\therefore \forall n \ P(n)$$

$$\therefore \forall n \ P(n)$$

$$\therefore \forall n \ P(n)$$

$$\Rightarrow P(a)$$

$$\Rightarrow P(a)$$

$$\Rightarrow P(a)$$

$$\Rightarrow P(a+1)$$

$$\Rightarrow P(a$$

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

1. Prove P(0)

- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. \forall n P(n)

Induction: 1, 4

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

- 1. Prove P(0)
- 2. Let k be an arbitrary integer ≥ 0

- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. \forall n P(n)

Intro ∀: 2, 3

Induction: 1, 4

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

- 1. Prove P(0)
- 2. Let k be an arbitrary integer ≥ 0
 - 3.1. Assume that P(k) is true
 - 3.2. ...
 - 3.3. Prove P(k+1) is true
- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- 5. \forall n P(n)

Direct Proof Rule

Intro \forall : 2, 3

Induction: 1, 4

Translating to an English Proof

$$P(0)$$

$$\forall k \ (P(k) \longrightarrow P(k+1))$$

$$\therefore \ \forall n \ P(n)$$

1. Prove P(0)

Base Case

- 2. Let k be an arbitrary integer ≥ 0 3.1. Assume that P(k) is true

 - 3.2. ...
 - 3.3. Prove P(k+1) is true

Inductive Hypothesis

> **Inductive** Step

- 3. $P(k) \rightarrow P(k+1)$
- 4. $\forall k (P(k) \rightarrow P(k+1))$
- $\forall n P(n)$

Direct Proof Rule

Intro \forall : 2, 3

Induction: 1, 4

Conclusion

Translating To An English Proof

```
Base Case
1. Prove P(0)
                                             Inductive
2. Let k be an arbitrary integer \geq 0
                                             Hypothesis
       3.1. Assume that P(k) is true
      3.2. ...
                                              Inductive
       3.3. Prove P(k+1) is true
                                              Step
                                       Direct Proof Rule
3. P(k) \rightarrow P(k+1)
                                       Intro \forall: 2, 3
4. \forall k (P(k) \rightarrow P(k+1))
5. \forall n P(n)
                                       Induction: 1, 4
```

Conclusion

Induction Proof Template

```
[...Define P(n)...]

We will show that P(n) is true for every n \in \mathbb{N} by Induction.

Base Case: [...proof of P(0) here...]

Induction Hypothesis:

Suppose that P(k) is true for some k \in \mathbb{N}.

Induction Step:

We want to prove that P(k+1) is true.

[...proof of P(k+1) here...]

The proof of P(k+1) must invoke the IH somewhere.

So, the claim is true by induction.
```

Inductive Proofs In 5 Easy Steps

Proof:

- **1.** "Let P(n) be... . We will show that P(n) is true for every $n \ge 0$ by Induction."
- **2.** "Base Case:" Prove P(0)
- 3. "Inductive Hypothesis:

Assume P(k) is true for some arbitrary integer $k \geq 0$ "

4. "Inductive Step:" Prove that P(k+1) is true:

Use the goal to figure out what you need.

Make sure you are using I.H. and point out where you are using it. (Don't assume P(k+1)!!)

5. "Conclusion: Result follows by induction"

What is $1 + 2 + 4 + ... + 2^n$?

•
$$1 + 2 = 3$$

$$\cdot 1 + 2 + 4 = 7$$

$$\bullet 1 + 2 + 4 + 8 = 15$$

$$\bullet$$
 1 + 2 + 4 + 8 + 16 = 31

It sure looks like this sum is $2^{n+1} - 1^{n+1} - 1^{n+1}$

How can we prove it?

We could prove it for n=1, n=2, n=3, ... but that would literally take forever.

Good that we have induction!

Proof. 1. Let P(n) be

"1+2+--+2" = 2"+1-1"

we will prove P(n) to all n>0 by induction

7. Bare (a/e: N=0: 1+ --+2"=1 = 2"-1-1

2°+=1=2-1-1

Prove
$$1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$$

1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} - 1$ ". We will show P(n) is true for all natural numbers by induction.

•

- **1.** Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.

3 Inductor Hypotheri: Assure that P(h) is true.

(au litrory) integer le 30. (ie. 1+2+...+2^k=2^{NFI}-1)

4. Inductor Sty: Goal: Show P(hH) is fine

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.

4. Induction Step:

Goal: Show P(k+1), i.e. show $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$

$$1 + 2 + ... + 2^k = 2^{k+1} - 1$$
 by IH

Adding 2^{k+1} to both sides, we get:

$$1 + 2 + ... + 2^{k} + 2^{k+1} = 2^{k+1} + 2^{k+1} - 1$$

Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

So, we have $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

Prove
$$1 + 2 + 4 + ... + 2^n = 2^{n+1} - 1$$

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show
$$1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$$

 $1 + 2 + ... + 2^k + 2^{k+1} = (1+2+... + 2^k) + 2^{k+1}$
 $= 2^{k+1} - 1 + 2^{k+1}$ by the IH

Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$. So, we have $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

Alternative way of writing the inductive step

- 1. Let P(n) be "1 + 2 + ... + $2^n = 2^{n+1} 1$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^0 = 1 = 2 1 = 2^{0+1} 1$ so P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show
$$1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$$

$$1 + 2 + ... + 2^{k} + 2^{k+1} = (1+2+... + 2^{k}) + 2^{k+1}$$

= $2^{k+1} - 1 + 2^{k+1}$ by the IH

Note that $2^{k+1} + 2^{k+1} = 2(2^{k+1}) = 2^{k+2}$.

So, we have $1 + 2 + ... + 2^k + 2^{k+1} = 2^{k+2} - 1$, which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Prof 1. Let P(n) he "1+2+..+h= 6(NH))6" Rajo Car. P(v) [HS = 0 RH(=0) 3. ±H. Assure that P(h) 1) true to same av bitrary h==0 Vrager 4 IS. Goal Shur P(h+1) = (k+1)(n+2)/2 H2+3+..+h+(h+1) - h(h+1) + (h+1) by IH. =(N+1)(=11) =(N+1)(N+2)

5. Comeluser

Prove
$$1 + 2 + 3 + ... + n = n(n+1)/2$$

1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show 1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2

- 1. Let P(n) be "0 + 1 + 2 + ... + n = n(n+1)/2". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): 0 = 0(0+1)/2. Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show
$$1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2$$

 $1 + 2 + ... + k + (k+1) = (1 + 2 + ... + k) + (k+1)$
 $= k(k+1)/2 + (k+1)$ by IH

Now
$$k(k+1)/2 + (k+1) = (k+1)(k/2 + 1) = (k+1)(k+2)/2$$
.
So, we have $1 + 2 + ... + k + (k+1) = (k+1)(k+2)/2$, which is exactly $P(k+1)$.

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Another example of a pattern

•
$$2^0 - 1 = 1 - 1 = 0 = 3 \cdot 0$$

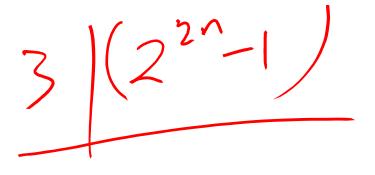
•
$$2^2 - 1 = 4 - 1 = 3 = 3 \cdot 1$$

•
$$2^4 - 1 = 16 - 1 = 15 = 3.5$$

•
$$2^6 - 1 = 64 - 1 = 63 = 3 \cdot 21$$

•
$$2^8 - 1 = 256 - 1 = 255 = 3.85$$

• ...



りんり

Prove: $3 \mid (2^{2n} - 1) \text{ for all } n \ge 0$

1 Let B(n) be "3/(22n-1)"
we pure p(n) frall n>0 by induction

Prove: $3 \mid (2^{2n} - 1) \text{ for all } n \ge 0$

- 1. Let P(n) be "3 | $(2^{2n}-1)$ ". We will show P(n) is true for all natural numbers by induction.

2. Base Case (n=0):
$$2^{2^{\circ}-1}=2^{\circ}-1=0$$
 3/0

Prove: $3 \mid (2^{2n} - 1) \text{ for all } n \ge 0$

- 1. Let P(n) be "3 | $(2^{2n}-1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^{2\cdot 0}-1=1-1=0=3\cdot 0$ Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show P(k+1), i.e. show
$$3 \mid (2^{2(k+1)} - 1)$$
By IH $3 \mid (2^{2k} - 1)$

Prove: $3 \mid (2^{2n} - 1)$ for all $n \ge 0$

- 1. Let P(n) be "3 | $(2^{2n}-1)$ ". We will show P(n) is true for all natural numbers by induction.
- **2.** Base Case (n=0): $2^{2\cdot 0}-1=1-1=0=3\cdot 0$ Therefore P(0) is true.
- 3. Induction Hypothesis: Suppose that P(k) is true for some arbitrary integer $k \ge 0$.
- 4. Induction Step:

Goal: Show
$$P(k+1)$$
, i.e. show $3 \mid (2^{2(k+1)} - 1)$

By IH, $3 \mid (2^{2k} - 1)$ so $2^{2k} - 1 = 3j$ for some integer j

So
$$2^{2(k+1)} - 1 = 2^{2k+2} - 1 = 4(2^{2k}) - 1 = 4(3j+1) - 1$$

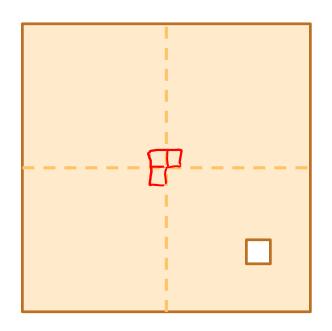
= $12j+3 = 3(4j+1)$

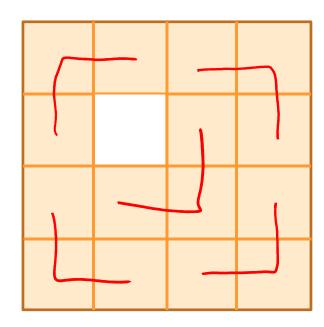
Therefore $3 \mid (2^{2(k+1)}-1)$ which is exactly P(k+1).

5. Thus P(n) is true for all $n \in \mathbb{N}$, by induction.

Checkerboard Tiling

• Prove that a $2^n \times 2^n$ checkerboard with one square removed can be tiled with:



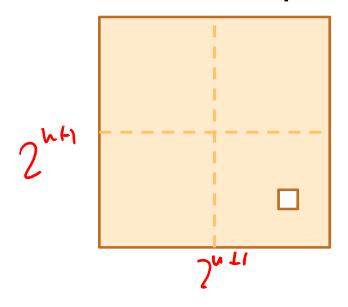


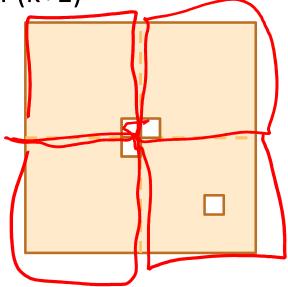
Checkerboard Tiling

- 1. Let P(n) be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with $\frac{1}{n}$. We prove P(n) for all $n \ge 1$ by induction on n.
- 2. Base Case: n=1

Checkerboard Tiling

- 1. Let P(n) be any $2^n \times 2^n$ checkerboard with one square removed can be tiled with $\frac{1}{n}$. We prove P(n) for all $n \ge 1$ by induction on n.
- 2. Base Case: n=1
- 3. Inductive Hypothesis: Assume P(k) for some arbitrary integer $k \ge 1$
- 4. Inductive Step: Prove P(k+1)





Apply IH to each quadrant then fill with extra tile.