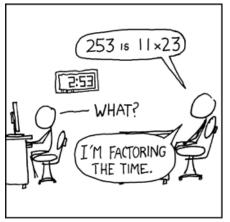
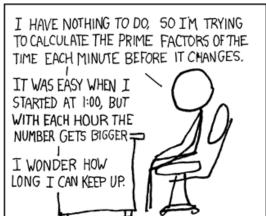
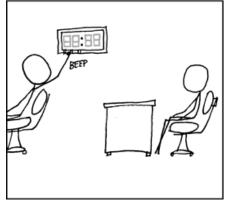
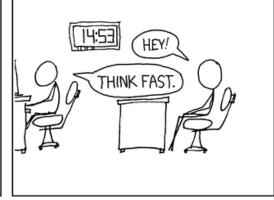
CSE 311: Foundations of Computing

Lecture 12: Primes, GCD









Basic Applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher

Hashing

Scenario:

Map a small number of data values from a large domain $\{0, 1, ..., M - 1\}$...

...into a small set of locations $\{0,1,...,n-1\}$ so one can quickly check if some value is present

- $hash(x) = x \mod p$ for p a prime close to n
 - $-\operatorname{or} \operatorname{hash}(x) = (ax + b) \operatorname{mod} p$
- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

Pseudo-Random Number Generation

Linear Congruential method

$$x_{n+1} = (a x_n + c) \bmod m$$

Choose random x_0 , a, c, m and produce a long sequence of x_n 's

Simple Ciphers

- Caesar cipher, A = 1, B = 2, . . .
 - HELLO WORLD
- Shift cipher
 - $f(p) = (p + k) \mod 26$
 - $-f^{-1}(p) = (p k) \mod 26$
- More general
 - $f(p) = (ap + b) \mod 26$

Primality

An integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*.

A positive integer that is greater than 1 and is not prime is called *composite*.

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a unique prime factorization

```
48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3

591 = 3 \cdot 197

45,523 = 45,523

321,950 = 2 \cdot 5 \cdot 5 \cdot 47 \cdot 137

1,234,567,890 = 2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803
```

Euclid's Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list $p_1, p_2, ..., p_n$.

Euclid's Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list $p_1, p_2, ..., p_n$.

Define the number $P=p_1\cdot p_2\cdot p_3\cdot \cdots \cdot p_n$ and let Q=P+1.

Euclid's Theorem

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list $p_1, p_2, ..., p_n$.

Define the number $P = p_1 \cdot p_2 \cdot p_3 \cdot \cdots \cdot p_n$ and let Q = P + 1.

Case 1: Q is prime: Then Q is a prime different from all of $p_1, p_2, ..., p_n$ since it is bigger than all of them.

Case 2: Q > 1 is not prime: Then Q has some prime factor p (which must be in the list). Therefore p|P and p|Q so p|(Q - P) which means that p|1.

Both cases are contradictions so the assumption is false.

Famous Algorithmic Problems

- Primality Testing
 - Given an integer n, determine if n is prime
- Factoring
 - Given an integer n, determine the prime factorization of n

Factoring

Factor the following 232 digit number [RSA768]:

Greatest Common Divisor

GCD(a, b):

Largest integer d such that $d \mid a$ and $d \mid b$

- GCD(100, 125) =
- GCD(17, 49) =
- GCD(11, 66) =
- GCD(13, 0) =
- GCD(180, 252) =

GCD and Factoring

$$a = 2^{3} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11 = 46,200$$

$$b = 2 \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 13 = 204,750$$

$$GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}$$

Factoring is expensive!

Can we compute GCD(a,b) without factoring?

Useful GCD Fact

If a and b are positive integers, then $gcd(a,b) = gcd(b, a \mod b)$

Useful GCD Fact

```
If a and b are positive integers, then gcd(a,b) = gcd(b, a \mod b)
```

Proof:

By definition of mod, $a = qb + (a \mod b)$ for some integer $q = a \operatorname{div} b$.

Let $d = \gcd(a, b)$. Then $d \mid a$ and $d \mid b$ so a = kd and b = jd for some integers k and j.

Therefore $(a \mod b) = a - qb = kd - qjd = (k - qj)d$. So, $d|(a \mod b)$ and since d|b we must have $d \leq \gcd(b, a \mod b)$.

Now, let $e = \gcd(b, a \mod b)$. Then $e \mid b$ and $e \mid (a \mod b)$ so b = me and $(a \mod b) = ne$ for some integers m and n.

Therefore $a = qb + (a \mod b) = qme + ne = (qm + n)e$. So, $e \mid a$ and since $e \mid b$ we must have $e \leq \gcd(a, b)$.

It follows that $gcd(a, b) = gcd(b, a \mod b)$.

Another simple GCD fact

If a is a positive integer, gcd(a,0) = a.

gcd(a, b) = gcd(b, a mod b), gcd(a, 0)=a

```
int gcd(int a, int b){ /* a >= b, b >= 0 */
    if (b == 0) {
       return a;
    }
    else {
       return gcd(b, a % b);
    }
```

Example: GCD(660, 126)

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

gcd(660,126) =

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

```
gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
= 6
```

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

In tableau form:

$$660 = 5 * 126 + 30$$

 $126 = 4 * 30 + 6$
 $30 = 5 * 6 + 0$

Bézout's theorem

If a and b are positive integers, then there exist integers s and t such that gcd(a,b) = sa + tb.

• Can use Euclid's Algorithm to find s, t such that

$$\gcd(a,b) = sa + tb$$

Can use Euclid's Algorithm to find s, t such that

$$\gcd(a,b) = sa + tb$$

Step 1 (Compute GCD & Keep Tableau Information):

a b b a mod b = r b r
$$a = q * b + r$$
 $gcd(35, 27) = gcd(27, 35 \mod 27) = gcd(27, 8)$ $35 = 1 * 27 + 8$

$$a = q * b + r$$

35 = 1 * 27 + 8

Can use Euclid's Algorithm to find s, t such that

$$\gcd(a,b) = sa + tb$$

Step 1 (Compute GCD & Keep Tableau Information):

a b b a mod b = r b r

$$gcd(35, 27) = gcd(27, 35 \mod 27) = gcd(27, 8)$$

 $= gcd(8, 27 \mod 8) = gcd(8, 3)$
 $= gcd(3, 8 \mod 3) = gcd(3, 2)$
 $= gcd(2, 3 \mod 2) = gcd(2, 1)$
 $= gcd(1, 2 \mod 1) = gcd(1, 0)$

a = q * b + r
 $35 = 1 * 27 + 8$
 $27 = 3 * 8 + 3$
 $8 = 2 * 3 + 2$
 $3 = 1 * 2 + 1$

Can use Euclid's Algorithm to find s, t such that

$$gcd(a, b) = sa + tb$$

Step 2 (Solve the equations for r):

a =
$$q * b + r$$

 $35 = 1 * 27 + 8$
 $27 = 3 * 8 + 3$
 $8 = 2 * 3 + 2$
 $3 = 1 * 2 + 1$
 $2 = 2 * 1 + 0$

$$r = a - q * b$$

 $8 = 35 - 1 * 27$

Can use Euclid's Algorithm to find s, t such that

$$gcd(a, b) = sa + tb$$

Step 2 (Solve the equations for r):

$$a = q * b + r$$
 $35 = 1 * 27 + 8$
 $27 = 3 * 8 + 3$
 $8 = 2 * 3 + 2$
 $3 = 1 * 2 + 1$
 $2 = 2 * 1 + 0$

r = a - q * b

$$8 = 35 - 1 * 27$$

 $3 = 27 - 3 * 8$
 $2 = 8 - 2 * 3$
 $1 = 3 - 1 * 2$

Can use Euclid's Algorithm to find s, t such that

$$\gcd(a,b) = sa + tb$$

Step 3 (Backward Substitute Equations):

Plug in the def of 2

3's and 8's

$$8 = 35 - 1 * 27$$
 $3 = 27 - 3 * 8$
 $1 = 3 - 1 * (8 - 2 * 3)$
 $= 3 - 8 + 2 * 3$
 $= (-1) * 8 + 3 * 3$
Re-arrange into 3's and 8's
 $2 = 8 - 2 * (3)$
 $1 = 3 - 1 * (2)$

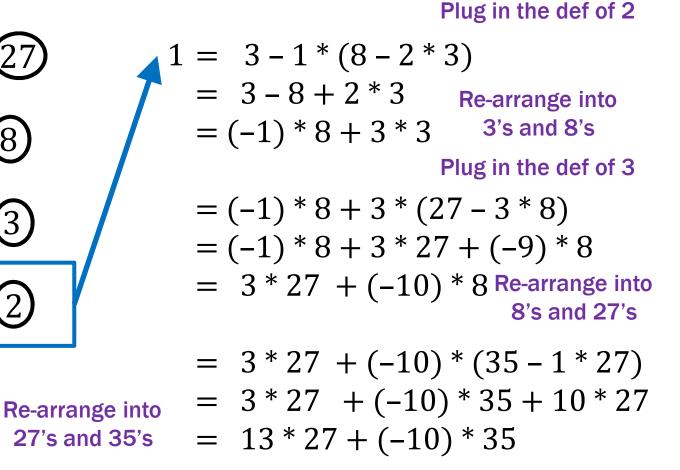
Can use Euclid's Algorithm to find s, t such that

$$\gcd(a,b) = sa + tb$$

Step 3 (Backward Substitute Equations):

8 = 35 - 1 *

3 = 27 - 3



Multiplicative inverse mod m

Suppose
$$GCD(a, m) = 1$$

By Bézout's Theorem, there exist integers s and t such that sa + tm = 1.

 $s \mod m$ is the multiplicative inverse of a:

$$1 = (sa + tm) \bmod m = sa \bmod m$$

Example

Solve: $7x \equiv 1 \pmod{26}$

Example

Solve: $7x \equiv 1 \pmod{26}$

$$gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1$$

$$26 = 7 * 3 + 5 \qquad 5 = 26 - 7 * 3$$

$$7 = 5 * 1 + 2 \qquad 2 = 7 - 5 * 1$$

$$5 = 2 * 2 + 1 \qquad 1 = 5 - 2 * 2$$

$$1 = 5 - 2*(7-5*1)$$

$$= (-7)*2 + 3*5$$

$$= (-7)*2 + 3*(26-7*3)$$

$$= (-11)*7 + 3*26$$

Multiplicative inverse of 7 mod 26

Now $(-11) \mod 26 = 15$. So, x = 15 + 26k for $k \in \mathbb{Z}$.

Example of a more general equation

Now solve: $7y \equiv 3 \pmod{26}$

We already computed that 15 is the multiplicative inverse of 7 modulo 26:

That is,
$$7 \cdot 15 \equiv 1 \pmod{26}$$

By the multiplicative property of mod we have

$$7 \cdot 15 \cdot 3 \equiv 3 \pmod{26}$$

So any $y \equiv 15 \cdot 3 \pmod{26}$ is a solution.

That is, y = 19 + 26k for any integer k is a solution.

Math mod a prime is especially nice

gcd(a, m) = 1 if m is prime and 0 < a < m so can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

Х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

mod 7