
CSE 311: Foundations of Computing

Lecture 12: Primes, GCD

Last time: Modular Arithmetic

• Working reduces to finite domain

• Elements are the classes of integers:
– for some (those)

– for some

– …

– for some

• Addition and multiplication are well defined

• Two’s complement representation
– addition and multiplication are esp. easy mod

– represent by instead (same mod

Basic Applications of mod

• Hashing

• Pseudo random number generation

• Simple cipher

Hashing

Scenario:

Map a small number of data values from a large
domain ...

...into a small set of locations so
one can quickly check if some value is present

• for a prime close to

– or

• Depends on all of the bits of the data
– helps avoid collisions due to similar values

– need to manage them if they occur

Pseudo-Random Number Generation

Linear Congruential method

Choose random , , and produce
a long sequence of ’s

Simple Ciphers

• Caesar cipher, A = 1, B = 2, . . .
– HELLO WORLD

• Shift cipher
– f(p) = (p + k) mod 26
– f-1(p) = (p – k) mod 26

• More general
– f(p) = (ap + b) mod 26

Primality

An integer p greater than 1 is called prime if the
only positive factors of p are 1 and p.

A positive integer that is greater than 1 and is not
prime is called composite.

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a
unique prime factorization

48 = 2 • 2 • 2 • 2 • 3
591 = 3 • 197
45,523 = 45,523
321,950 = 2 • 5 • 5 • 47 • 137
1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803

Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:
Suppose that there are only a finite number of primes
and call the full list .

Euclid’s Theorem

There are an infinite number of primes.

Proof by contradiction:
Suppose that there are only a finite number of primes
and call the full list .

Define the number and let
.

Euclid’s Theorem

There are an infinite number of primes.
Proof by contradiction:

Suppose that there are only a finite number of primes
and call the full list .
Define the number and let

.
Case 1: is prime: Then is a prime different from
all of since it is bigger than all of them.

Case 2: is not prime: Then has some prime
factor (which must be in the list). Therefore
and so which means that .

Both cases are contradictions so the assumption is
false.

Famous Algorithmic Problems

• Primality Testing

– Given an integer , determine if is prime

• Factoring

– Given an integer , determine the prime
factorization of

Factoring

Factor the following 232 digit number [RSA768]:

123018668453011775513049495838496272077
285356959533479219732245215172640050726
365751874520219978646938995647494277406
384592519255732630345373154826850791702
612214291346167042921431160222124047927
4737794080665351419597459856902143413

12301866845301177551304949583849627207728535695953347
92197322452151726400507263657518745202199786469389956
47494277406384592519255732630345373154826850791702612
21429134616704292143116022212404792747377940806653514
19597459856902143413

334780716989568987860441698482126908177047949837
137685689124313889828837938780022876147116525317
43087737814467999489

367460436667995904282446337996279526322791581643
430876426760322838157396665112792333734171433968
10270092798736308917

Greatest Common Divisor

GCD(a, b):
Largest integer such that and

• GCD(100, 125) =
• GCD(17, 49) =
• GCD(11, 66) =
• GCD(13, 0) =
• GCD(180, 252) =

GCD and Factoring

a = 23 • 3 • 52 • 7 • 11 = 46,200

b = 2 • 32 • 53 • 7 • 13 = 204,750

GCD(a, b) = 2min(3,1) • 3min(1,2) • 5min(2,3) • 7min(1,1) • 11min(1,0) • 13min(0,1)

Factoring is expensive!
Can we compute GCD(a,b) without factoring?

Useful GCD Fact

If a and b are positive integers, then
gcd(a,b) = gcd(b, a mod b)

Useful GCD Fact

If a and b are positive integers, then
gcd(a,b) = gcd(b, a mod b)

Proof:
By definition of mod, for some integer .

Let . Then and so and
for some integers and .

Therefore .
So, and since we must have .

Now, let . Then and so
and for some integers and .

Therefore .
So, and since we must have .

It follows that .

Another simple GCD fact

If a is a positive integer, gcd(a,0) = a.

Euclid’s Algorithm

gcd(a, b) = gcd(b, a mod b), gcd(a,0)=a

int gcd(int a, int b){ /* a >= b, b >= 0 */
if (b == 0) {

return a;
}
else {

return gcd(b, a % b);
}

Example: GCD(660, 126)

Euclid’s Algorithm

gcd(660,126) =

Repeatedly use to reduce
numbers until you get .

gcd(660,126)

Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
= 6

gcd(660,126)

Repeatedly use to reduce
numbers until you get .

Euclid’s Algorithm

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
= 6

gcd(660,126)

Repeatedly use to reduce
numbers until you get .

660 = 5 * 126 + 30
126 = 4 * 30 + 6
30 = 5 * 6 + 0

In tableau form:

Bézout’s theorem

If a and b are positive integers, then there exist
integers s and t such that

gcd(a,b) = sa + tb.

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find such that

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find such that

Step 1 (Compute GCD & Keep Tableau Information):

a b b a mod b = r b r a = q * b + r

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find such that

Step 1 (Compute GCD & Keep Tableau Information):

a b b a mod b = r b r a = q * b + r

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find such that

Step 2 (Solve the equations for r):

a = q * b + r r = a -- q * b

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find such that

Step 2 (Solve the equations for r):

a = q * b + r r = a -- q * b

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find such that

Step 3 (Backward Substitute Equations):
Plug in the def of 2

Re-arrange into
3’s and 8’s

Extended Euclidean algorithm

• Can use Euclid’s Algorithm to find such that

Step 3 (Backward Substitute Equations):
Plug in the def of 2

Re-arrange into
3’s and 8’s

Plug in the def of 3

Re-arrange into
8’s and 27’s

Re-arrange into
27’s and 35’s

Multiplicative inverse

Suppose

By Bézout’s Theorem, there exist integers and

such that

is the multiplicative inverse of :

Example

Solve:

Example

Solve:

Now . So, for

Multiplicative inverse of 7 mod 26

Example of a more general equation

Now solve:

We already computed that is the multiplicative
inverse of modulo

That is,

By the multiplicative property of mod we have

So any is a solution.

That is, for any integer is a solution.

Math mod a prime is especially nice

+ 0 1 2 3 4 5 6

0 0 1 2 3 4 5 6

1 1 2 3 4 5 6 0

2 2 3 4 5 6 0 1

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3

5 5 6 0 1 2 3 4

6 6 0 1 2 3 4 5

X 0 1 2 3 4 5 6

0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6

2 0 2 4 6 1 3 5

3 0 3 6 2 5 1 4

4 0 4 1 5 2 6 3

5 0 5 3 1 6 4 2

6 0 6 5 4 3 2 1

if is prime and so
can always solve these equations mod a prime.

mod 7

