CSE 311: Foundations of Computing

Lecture 12: Primes, GCD

- Working mod m reduces to finite domain
- Elements are the *m* classes of integers:
 - -0 + mk for some $k \in \mathbb{Z}$ (those $\equiv 0 \pmod{m}$)
 - -1 + mk for some $k \in \mathbb{Z}$

 $= 2^{\alpha} - (+(-))^{-1}$

- -m-1+mk for some $k \in \mathbb{Z}$
- =(2n-1)-x+1Addition and multiplication are well defined
- Two's complement representation
 - addition and multiplication are esp. easy mod 2^n

- represent -x by $2^n - x$ instead (same mod 2^n)

Basic Applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher

Scenario:

Map a small number of data values from a large domain $\{0, 1, \dots, \underline{M} - 1\}$ into a small set of locations $\{0, 1, \dots, \underline{n} - 1\}$ so one can quickly check if some value is present

- $hash(x) = x \mod p$ for p a prime close to n- or $hash(x) = (ax + b) \mod p$
- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

Pseudo-Random Number Generation

Linear Congruential method

$$x_{n+1} = (a \ x_n + c) \mod m$$

$$(x_{n+1} = (a \ x_n + c) \mod m$$

$$(x_{n+1} = (a \ x_n + c) \mod m$$

$$(x_{n+1} = (a \ x_n + c) \mod m$$

$$(x_{n+1} = (a \ x_n + c) \mod m$$

$$(x_{n+1} = (a \ x_n + c) \mod m$$

Simple Ciphers

- **Caesar cipher**, A = 1, B = 2, . . .
 - HELLO WORLD
- Shift cipher
 - $f(p) = (p + k) \mod 26$
 - $-f^{-1}(p) = (p k) \mod 26$
- More general

 $- f(p) = (ap + b) \mod 26$

An integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*.

A positive integer that is greater than 1 and is not prime is called *composite*.

Fundamental Theorem of Arithmetic

Every positive integer greater than 1 has a unique prime factorization

48 = 2 • 2 • 2 • 2 • 3 591 = 3 • 197 45,523 = 45,523 321,950 = 2 • 5 • 5 • 47 • 137 1,234,567,890 = 2 • 3 • 3 • 5 • 3,607 • 3,803

There are an infinite number of primes.

Proof by contradiction:

Suppose that there are only a finite number of primes and call the full list $p_1, p_2, ..., p_n$.

There are an infinite number of primes.

Proof by contradiction:

- Suppose that there are only a finite number of primes and call the full list $p_1, p_2, ..., p_n$.
- Define the number $P = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n$ and let Q = P + 1.

Q KSCI

Euclid's Theorem $(5 - q) \wedge (- s - q)$

There are an infinite number of primes.

- Proof by contradiction: $\int Q + s = \sqrt{m} dr$ Suppose that there are only a finite number of primes and call the full list p_1, p_2, \dots, p_n .
 - Define the number $P = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n$ and let Q = P + 1.

Case 1: Q is prime: Then Q is a prime different from all of p_1, p_2, \ldots, p_n since it is bigger than all of them.

Case 2: Q > 1 is not prime: Then Q has some prime factor p (which must be in the list). Therefore p | P and p | Q so p | (Q - P) which means that p | 1.

Both cases are contradictions so the assumption is -4η false.

Famous Algorithmic Problems

- 1 \ • Primality Testing e and
 - Given an integer n, determine if n is prime
- Factoring
 - "hard - Given an integer n, determine the prime factorization of *n*

Factor the following 232 digit number [RSA768]:

GCD(a, b):

Largest integer d such that $d \mid a$ and $d \mid b$

- GCD(100, 125) = $2 \leq 3$
- GCD(17, 49) = /
- GCD(11, 66) = ()
 GCD(13, 0) = (3
- GCD(180, 252) =

GCD and Factoring

- $a = 2^3 \cdot 3 \cdot 5^2 \cdot 7 \cdot 11 = 46,200$
- $b = 2 \cdot 3^2 \cdot 5^3 \cdot 7 \cdot 13 = 204,750$

 $GCD(a, b) = 2^{\min(3,1)} \cdot 3^{\min(1,2)} \cdot 5^{\min(2,3)} \cdot 7^{\min(1,1)} \cdot 11^{\min(1,0)} \cdot 13^{\min(0,1)}$

Factoring is expensive! Can we compute GCD(a,b) without factoring?

Useful GCD Fact

If *a* and *b* are positive integers, then gcd(*a*,*b*) = gcd(*b*, *a* mod *b*)

Useful GCD Fact

If *a* and *b* are positive integers, then gcd(*a*,*b*) = gcd(*b*, *a* mod *b*)

Proof: By definition of mod, $a = qb + (a \mod b)$ for some integer $q = a \operatorname{div} b$.

Let d = gcd(a, b). Then d|a and d|b so a = kd and b = jdfor some integers k and j.

Therefore $(a \mod b) = a - qb = kd - qjd = (k - qj)d$. So, $d|(a \mod b)$ and since d|b we must have $d \leq gcd(b, a \mod b)$.

Now, let $e = \gcd(b, a \mod b)$. Then $e \mid b$ and $e \mid (a \mod b)$ so b = me and $(a \mod b) = ne$ for some integers m and n.

Therefore $a = qb + (a \mod b) = qme + ne = (qm + n)e$. So, $e \mid a$ and since $e \mid b$ we must have $e \leq gcd(a, b)$.

It follows that $gcd(a, b) = gcd(b, a \mod b)$.

If a is a positive integer, gcd(a,0) = a.

 $gcd(a, b) = gcd(b, a \mod b), gcd(a, 0)=a$

Example: GCD(660, 126)

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

gcd(660,126) =

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

```
gcd(660,126) = gcd(126, 660 \mod 126) = gcd(126, 30)
= gcd(30, 126 \mod 30) = gcd(30, 6)
= gcd(6, 30 \mod 6) = gcd(6, 0)
= 6
```

Repeatedly use $gcd(a, b) = gcd(b, a \mod b)$ to reduce numbers until you get gcd(g, 0) = g.

$$gcd(660,126) = gcd(126, 660 \mod 126) = gcd(126, 30)$$

= $gcd(30, 126 \mod 30) = gcd(30, 6)$
= $gcd(6, 30 \mod 6) = gcd(6, 0)$
= 6

If *a* and *b* are positive integers, then there exist integers *s* and *t* such that gcd(a,b) = sa + tb.

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

Step 1 (Compute GCD & Keep Tableau Information):

abamodbra= q * b + rgcd(35, 27) = gcd(27, 35 mod 27) = gcd(27, 8)gcd(27, 8)35 = 1 * 27 + 8

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 1 (Compute GCD & Keep Tableau Information):

a bb a mod b = rb ra = q * b + r $gcd(35, 27) = gcd(27, 35 \mod 27) = gcd(27, 8)$ $= gcd(27, 35 \mod 27) = gcd(27, 8)$ 35 = 1 * 27 + 8 $= gcd(8, 27 \mod 8)$ = gcd(8, 3)27 = 3 * 8 + 3 $= gcd(3, 8 \mod 3)$ = gcd(3, 2)8 = 2 * 3 + 2 $= gcd(2, 3 \mod 2)$ = gcd(2, 1)3 = 1 * 2 + 1 $= gcd(1, 2 \mod 1)$ = gcd(1, 0)

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = sa + tb

Step 2 (Solve the equations for r):

a =
$$q * b + r$$

 $35 = 1 * 27 + 8$
 $27 = 3 * 8 + 3$
 $8 = 2 * 3 + 2$
 $3 = 1 * 2 + 1$
 $2 = 2 * 1 + 0$

r = a - q * b8 = 35 - 1 * 27

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a, b) = scaleStep 2 (Solve the equations for r):a = q * b + r35 = 1 * 27 + 827 = 3 * 8 + 38 = 2 * 3 + 23 = 1 * 2 + (1)2 = 2 * 1 + 0

$$r = a - q * b$$

$$8 = 35 - 1 * 27$$

$$3 = 27 - 3 * 8$$

$$2 = 8 - 2 * 3$$

$$1 = 3 - 1 * 2$$

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

Plug in the def of 2

• Can use Euclid's Algorithm to find *s*, *t* such that

gcd(a,b) = sa + tb

Step 3 (Backward Substitute Equations):

Plug in the def of 2

8 = 35 - 11 = 3 - 1 * (8 - 2 * 3)= 3 - 8 + 2 * 3**Re-arrange into** = (-1) * 8 + 3 * 3 3's and 8's $\bigcirc 3 = 27 - 3$ Plug in the def of 3 = (-1) * 8 + 3 * (27 - 3 * 8)8 = (-1) * 8 + 3 * 27 + (-9) * 8= 3 * 27 + (-10) * 8 Re-arrange into 8's and 27's = 3 * 27 + (-10) * (35 - 1 * 27)= 3 * 27 + (-10) * 35 + 10 * 27**Re-arrange into** = 13 * 27 + (-10) * 3527's and 35's

Suppose GCD(a, m) = 1

By Bézout's Theorem, there exist integers *s* and *t* such that sa + tm = 1.

s mod m is the multiplicative inverse of a: $1 = (sa + tm) \mod m = sa \mod m$

Solve: $7x \equiv 1 \pmod{26}$

Solve: $7x \equiv 1 \pmod{26}$

gcd(26,7) = gcd(7,5) = gcd(5,2) = gcd(2,1) = 1

26 =	7 * 3 + 5	5 = 26 -	7 * 3
7 =	5 * 1 + 2	2 = 7-	5 * 1
5 =	2 * 2 + 1	1 = 5 -	2 * 2

1 = 5 - 2*(7 - 5*1)= (-7)*2 + 3*5 = (-7)*2 + 3*(26 - 7*3) = (-11)*7 + 3*26 Multiplicative inverse of 7 mod 26 Now (-11) mod 26 = 15. So, x = 15 + 26k for $k \in \mathbb{Z}$. Now solve: $7y \equiv 3 \pmod{26}$

We already computed that 15 is the multiplicative inverse of 7 modulo 26:

That is, $7 \cdot 15 \equiv 1 \pmod{26}$

By the multiplicative property of mod we have

 $7 \cdot 15 \cdot 3 \equiv 3 \pmod{26}$

So any $y \equiv 15 \cdot 3 \pmod{26}$ is a solution.

That is, y = 19 + 26k for any integer k is a solution.

gcd(a, m) = 1 if *m* is prime and 0 < a < m so can always solve these equations mod a prime.

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

х	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1