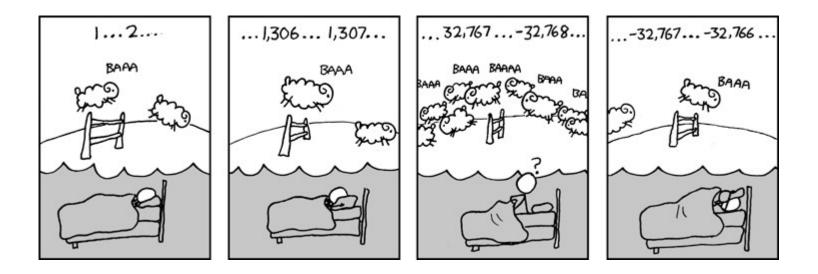
CSE 311: Foundations of Computing

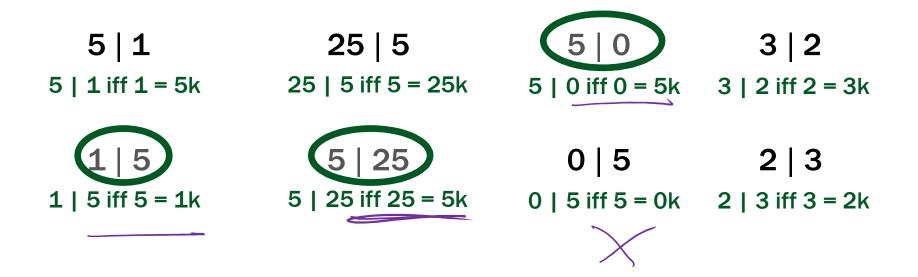
Lecture 11: Modular Arithmetic and Applications

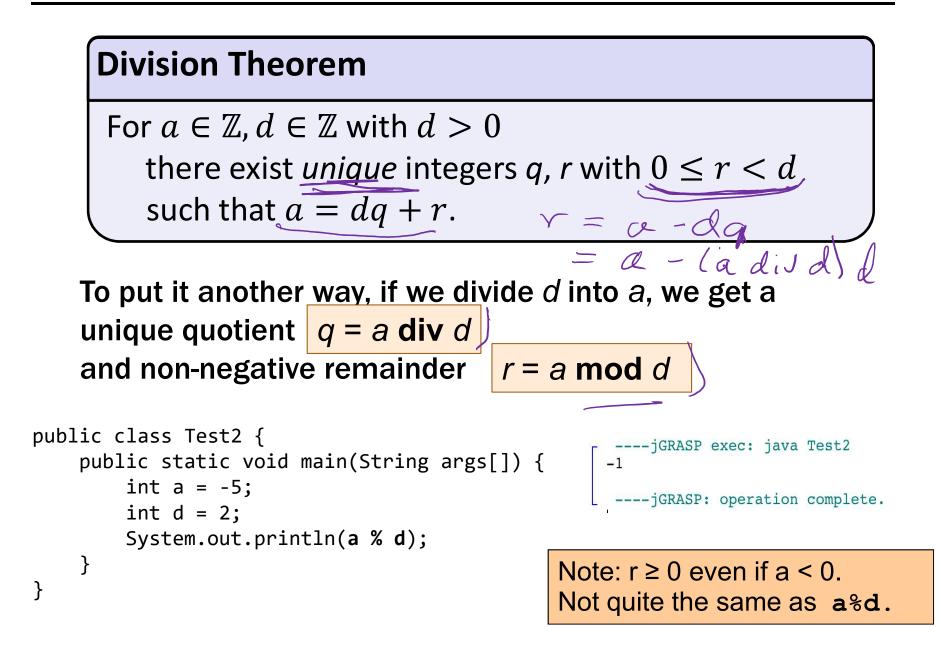


Last Class: Divisibility

For
$$a \in \mathbb{Z}, b \in \mathbb{Z}$$
 with $a \neq 0$:
 $a \mid b \Leftrightarrow \exists k \in \mathbb{Z} \ (b = ka)$

Check Your Understanding. Which of the following are true?





 $a +_7 b = (a + b) \mod 7$ $a \times_7 b = (a \times b) \mod 7$

	+	0	1	2	3	4	5	6		Х	0	1	2	3	4	5	6
A	0	0	1	2	3	4	5	6	Ń	0	0	0	0	0	0	0	0
	1	1	2	3	4	5	6	0		1	0	1	2	3	4	5	6
	2	2	3	4	5	6	0	1		2	0	2	4	6	1	3	5
	3	3	4	5	6 (0	>1	2		3	0	3	6	2	5	1	4
	4	4	5	6	0	1	2	3		4	0	4	1	5	2	6	3
	5	5	6	0	1	2	3	4		5	0	5	3	1	6	4	2
	6	6	0	1	2	3	4	5		6	0	6	5	4	3	2	1
		ſ						-		/							

Modular Arithmetic

Definition: "a is congruent to b modulo m"
For
$$a, b, m \in \mathbb{Z}$$
 with $m > 0$
 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

$$x \equiv 0 \pmod{2}$$

$$z = (x - 0) = x$$

$$x = 0 \pmod{2}$$

$$-1 \equiv 19 \pmod{5}$$

$$y \equiv 2 \pmod{7}$$

$$7 = 2 \pmod{7}$$

$$x = 2 \pmod{7}$$

$$x = 2 \pmod{7}$$

$$x = 2 - 7k$$

Definition: "a is congruent to b modulo m"

For $a, b, m \in \mathbb{Z}$ with m > 0

 $a \equiv b \pmod{m} \leftrightarrow m \mid (a - b)$

Check Your Understanding. What do each of these mean? When are they true?

 $x \equiv 0 \pmod{2}$

This statement is the same as saying "x is even"; so, any x that is even (including negative even numbers) will work.

 $-1 \equiv 19 \pmod{5}$

This statement is true. 19 - (-1) = 20 which is divisible by 5

 $y \equiv 2 \pmod{7}$

This statement is true for y in $\{ ..., -12, -5, 2, 9, 16, ... \}$. In other words, all y of the form 2+7k for k an integer.

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv b \pmod{m}$.

By defn,
$$n (a-b, so a-b = ank for some k.$$

Equiviliantly, $a = 6 + mk$. By Din Then, $b = qmtr$
for some $0 \le r \le m$. Thur, $a = b + mk =$
 $(qmir) = rk = (q+k)m + r$. By Div Then,

Suppose that $a \mod m = b \mod m$. $b \mod m = l = \alpha \mod m$.

Unite
$$a = km + r$$
 and $b = jm + r$ where
 $r = a n \cdot dm = h \cdot a \cdot dm$. Thus, $a - b = lm \cdot r - (jm \cdot r) = (k - j)m$, which proves
 $a \equiv lo \pmod{n}$.

Modular Arithmetic: A Property

Let a, b, m be integers with m > 0. Then, $a \equiv b \pmod{m}$ if and only if $a \mod m = b \mod m$.

Suppose that $a \equiv b \pmod{m}$.

Then, $m \mid (a - b)$ by definition of congruence.

So, a - b = km for some integer k by definition of divides.

Therefore, a = b + km.

Taking both sides modulo *m* we get:

 $a \mod m = (b + km) \mod m = b \mod m$.

Suppose that $a \mod m = b \mod m$.

By the division theorem, $a = mq + (a \mod m)$ and

 $b = ms + (b \mod m)$ for some integers q,s.

Then, $a - b = (mq + (a \mod m)) - (ms + (b \mod m))$

 $= m(q-s) + (a \mod m - b \mod m)$

= m(q - s) since $a \mod m = b \mod m$

Therefore, $m \mid (a - b)$ and so $a \equiv b \pmod{m}$.

- What we have just shown
 - The mod *m* function takes any $a \in \mathbb{Z}$ and maps it to a remainder $a \mod m \in \{0, 1, ..., m 1\}$.
 - Imagine grouping together all integers that have the same value of the mod m function That is, the same remainder in $\{0,1,..,m-1\}$.
 - The $\equiv \pmod{m}$ predicate compares $a, b \in \mathbb{Z}$. It is true if and only if the mod m function has the same value on a and on b.

That is, *a* and *b* are in the same group.

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Suppose
$$a \equiv b \pmod{a}$$
 and $c \equiv d \pmod{a}$.
That near $a - b = km$ for sinc $k \in \mathbb{Z}$,
or equivalently, $a \equiv b + km$. Likenske,
which have $c \equiv d + lm$ for sine $l \in \mathbb{Z}$.
Thur, $a + c \equiv b + km + d + lm \equiv$
 $b + d + (k + l)m$, which near
 $(a + c) - (b + d) \equiv (k + l)m$ D
 $a + c \equiv b + d (mod m)$.

Modular Arithmetic: Addition Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $a + c \equiv b + d \pmod{m}$

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Adding the equations together gives us (a + c) - (b + d) = m(k + j). Now, re-applying the definition of congruence gives us $a + c \equiv b + d \pmod{m}$.

Modular Arithmetic: Multiplication Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

As before,
$$h = b + k n + ond c = d + k n$$

for some $k, k \in \mathcal{V}$. Then $ac =$
 $(b + k n)(d + k n) = b + b k n +$
 $k m d + k n k n = b k + (lb + k d + k l n) n$,
 $w k i d m c m q c = b d (m - d m)$

Modular Arithmetic: Multiplication Property

Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $ac \equiv bd \pmod{m}$

Suppose that $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Unrolling definitions gives us some k such that a - b = km, and some j such that c - d = jm.

Then, a = km + b and c = jm + d. Multiplying both together gives us $ac = (km + b)(jm + d) = kjm^2 + kmd + bjm + bd$.

Re-arranging gives us ac - bd = m(kjm + kd + bj). Using the definition of congruence gives us $ac \equiv bd \pmod{m}$.

Example

Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$

Let's start by looking a a small example:

$$0^{2} = 0 \equiv 0 \pmod{4}$$

$$1^{2} = 1 \equiv 1 \pmod{4}$$

$$2^{2} = 4 \equiv 0 \pmod{4}$$

$$3^{2} = 9 \equiv 1 \pmod{4}$$

$$4^{2} = 16 \equiv 0 \pmod{4}$$

Example

Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$ Let's start by looking a a small example: Case 1 (n is even): $0^2 = 0 \equiv 0 \pmod{4}$ Suppose n'is ever, $1^2 = 1 \equiv 1 \pmod{4}$ Then n = 2k for some $k \in \mathbb{Z}$. $2^2 = 4 \equiv 0 \pmod{4}$ So $h^2 = (2kl^2 = 4k^2)$, $3^2 = 9 \equiv 1 \pmod{4}$ $4^2 = 16 \equiv 0 \pmod{4}$ which means It looks like Case 2 (n is odd) $\mathbb{N}^2 \equiv \mathbb{O} \pmod{4} \rightarrow n \equiv 0 \pmod{2} \rightarrow n^2 \equiv 0 \pmod{4}$, and $n \equiv 1 \pmod{2} \rightarrow n^2 \equiv 1 \pmod{4}.$ In this cases we have N = 2k+1 for some k <21. So nº = (2k+1)² = 422 + 26 + 26 + 1 = 462 - 48 + 1 $= (+ 4(k^2 + k)).$

Example

Let *n* be an integer. Prove that $n^2 \equiv 0 \pmod{4}$ or $n^2 \equiv 1 \pmod{4}$ Let's start by looking a a small example: Case 1 (*n* is even): $0^2 = 0 \equiv 0 \pmod{4}$ Suppose $n \equiv 0 \pmod{2}$. $1^2 = 1 \equiv 1 \pmod{4}$ Then, n = 2k for some integer k. $2^2 = 4 \equiv 0 \pmod{4}$ So, $n^2 = (2k)^2 = 4k^2$. So, by $3^2 = 9 \equiv 1 \pmod{4}$ definition of congruence, $4^2 = 16 \equiv 0 \pmod{4}$ $n^2 \equiv 0 \pmod{4}$. It looks like $n \equiv 0 \pmod{2} \rightarrow n^2 \equiv 0 \pmod{4}$, and Case 2 (n is odd): $n \equiv 1 \pmod{2} \rightarrow n^2 \equiv 1 \pmod{4}$. Suppose $n \equiv 1 \pmod{2}$. Then, n = 2k + 1 for some integer k. So, $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4(k^2 + k) + 1$. So, by definition of congruence, $n^2 \equiv 1 \pmod{4}$.

n-bit Unsigned Integer Representation

• Represent integer x as sum of powers of 2: If $\sum_{i=0}^{n-1} b_i 2^i$ where each $b_i \in \{0,1\}$ then representation is $b_{n-1}...b_2 b_1 b_0$

For n = 8:
99: 0110 0011
18: 0001 0010

Sign-Magnitude Integer Representation

```
n-bit signed integers
Suppose that -2^{n-1} < x < 2^{n-1}
First bit as the sign, n-1 bits for the value
99 = 64 + 32 + 2 + 1
18 = 16 + 2
For n = 8:
 99: 0110 0011
 -18: 1001 0010
```

Any problems with this representation?

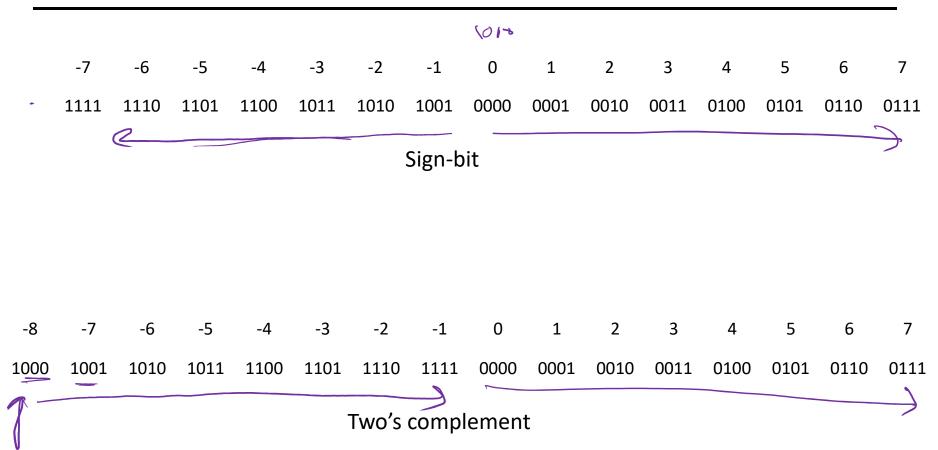
Two's Complement Representation

n bit signed integers, first bit will still be the sign bit

Suppose that $0 \le x < 2^{n-1}$, $2^n - 2^{n-1}$, *x* is represented by the binary representation of *x* Suppose that $0 \le x \le 2^{n-1}$, , -*x* is represented by the binary representation of $2^n - x$

Key property: Twos complement representation of any number y is equivalent to $y \mod 2^n$ so arithmetic works $\mod 2^n$

Sign-Magnitude vs. Two's Complement



- For $0 < x \le 2^{n-1}$, -x is represented by the binary representation of $2^n x$
 - That is, the two's complement representation of any number y has the same value as y modulo 2^n .
- To compute this: Flip the bits of x then add 1:
 - All 1's string is $2^n 1$, so Flip the bits of $x \equiv$ replace x by $2^n - 1 - x$ Then add 1 to get $2^n - x$

Basic Applications of mod

- Hashing
- Pseudo random number generation
- Simple cipher

Scenario:

Map a small number of data values from a large domain $\{0, 1, ..., M - 1\}$...

...into a small set of locations $\{0,1, ..., n-1\}$ so one can quickly check if some value is present

- $hash(x) = x \mod p$ for p a prime close to n- or $hash(x) = (ax + b) \mod p$
- Depends on all of the bits of the data
 - helps avoid collisions due to similar values
 - need to manage them if they occur

Pseudo-Random Number Generation

Linear Congruential method

$$x_{n+1} = (a x_n + c) \mod m$$

Choose random x_0 , a, c, m and produce a long sequence of x_n 's

Simple Ciphers

- **Caesar cipher**, A = 1, B = 2, . . .
 - HELLO WORLD
- Shift cipher
 - $f(p) = (p + k) \mod 26$
 - $-f^{-1}(p) = (p k) \mod 26$
- More general

 $- f(p) = (ap + b) \mod 26$