
CSE 311: Foundations of Computing

Lecture 9:  English Proofs, Strategies, Set Theory



Last class: Inference Rules for Quantifiers

x P(x)        
P(a) for any a

P(c) for some c
x P(x)

Intro  Elim 

* in the domain of P.  No other   
name in P depends on a 

** c is a NEW name. 
List all dependencies for c.

“Let a be arbitrary*”...P(a)
x P(x)

Intro  x P(x)
P(c) for some special** c

Elim 



Last class: Even and Odd

Prove: “The square of every even number is even.”
Formal proof of:  x (Even(x)  Even(x2))

1. Let a be an arbitrary integer
2.1   Even(a) Assumption
2.2 y (a = 2y) Definition of Even
2.3   a = 2b Elim : b special depends on a
2.4 
2.5 y (a2 = 2y) Intro  rule
2.6  Even(a2) Definition of Even

2.   Even(a)Even(a2) Direct proof rule
3.   x (Even(x)Even(x2))         Intro : 1,2

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 



Last class: Even and Odd

Prove: “The square of every even number is even.”
Formal proof of:  x (Even(x)  Even(x2))

1. Let a be an arbitrary integer
2.1   Even(a) Assumption
2.2 y (a = 2y) Definition of Even
2.3   a = 2b Elim : b special depends on a
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2.5 y (a2 = 2y) Intro  rule
2.6  Even(a2) Definition of Even

2.   Even(a)Even(a2) Direct proof rule
3.   x (Even(x)Even(x2))         Intro : 1,2
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Domain: Integers 



English Proof: Even and Odd

Prove “The square of every even integer is even.”

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 

1. Let a be an arbitrary integer
2.1   Even(a) Assumption

2.2   y (a = 2y) Definition
2.3   a = 2b b special depends on a

2.4   a2 = 4b2 = 2(2b2) Algebra

2.5 y (a2 = 2y)
2.6  Even(a2) Definition

2.   Even(a)Even(a2)
3.   x (Even(x)Even(x2))

English Proof:
(translate from right)



English Proof: Even and Odd

Prove “The square of every even integer is even.”

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 

1. Let a be an arbitrary integer
2.1   Even(a) Assumption

2.2   y (a = 2y) Definition
2.3   a = 2b b special depends on a

2.4   a2 = 4b2 = 2(2b2) Algebra

2.5 y (a2 = 2y)
2.6  Even(a2) Definition

2.   Even(a)Even(a2)
3.   x (Even(x)Even(x2))

Proof: Let a be an arbitrary 
even integer.  

Then, by definition, a = 2b
for some integer b
(depending on a).

Squaring both sides, we get 
a2 = 4b2 = 2(2b2). 

Since 2b2 is an integer, by 
definition, a2 is even.

Since a was arbitrary, it 
follows that the square of 
any even integer is even.



Even and Odd

Prove “The square of every odd integer is odd.”

Even(x) 
Odd(x) 

Predicate Definitions

Integers
Domain of Discourse



Even and Odd

Prove “The square of every odd integer is odd.”

Proof: Let b be an arbitrary odd integer.
Then, b = 2c+1 for some integer c (depending on b).
Therefore, b2 = (2c+1)2 =  4c2 + 4c + 1 = 2(2c2 + 2c) + 1.
Since 2c2+2c is an integer, b2 is odd.   Since b was 
arbitrary, the square of every odd integer is odd.      

Even(x) 
Odd(x) 

Predicate Definitions

Integers
Domain of Discourse



Proof Strategies: Counterexamples

To disprove x P(x) prove  P(x) :

• Works by de Morgan’s Law:

• All we need to do that is find an for which is 
false

• This example is called a counterexample to  .

e.g. Disprove “Every prime number is odd”



Proof Strategies: Proof by Contrapositive

If we assume q and derive p, then we have proven  
q p, which is equivalent to proving p  q.

1.1.  Assumption

...

1.3. 
1.   Direct Proof Rule

2.  Contrapositive: 1                       



Proof by Contradiction:  One way to prove p

If we assume p and derive F (a contradiction), then 
we have proven p.

1.1.  Assumption

...

1.3.  

1.    Direct Proof rule

2.     Law of Implication: 1

3.    Identity: 2



Even and Odd

Prove: “No integer is both even and odd.”
English proof:  x (Even(x)Odd(x)) 

x (Even(x)Odd(x))

Even(x) 
Odd(x) 

Predicate Definitions

Integers
Domain of Discourse



Even and Odd

Prove: “No integer is both even and odd.”
English proof:  x (Even(x)Odd(x)) 

x (Even(x)Odd(x))

Proof: We work by contradiction. Let x be an arbitrary 
integer and suppose that it is both even and odd.   
Then x=2a for some integer a and x=2b+1 for some 
integer b.   Therefore 2a=2b+1 and hence a=b+½.
But two integers cannot differ by ½ so this is a 
contradiction.  So, no integer is both even and odd.

Even(x) 
Odd(x) 

Predicate Definitions

Integers
Domain of Discourse



Rational Numbers

• A real number x is rational iff there exist integers p
and q with q0 such that x=p/q.

Rational(x)  p q  ((x=p/q)  Integer(p)  Integer(q)  q0)    

Real Numbers
Domain of Discourse



Rationality

Prove: “If x and y are rational then xy is rational.”

Rational(x) 
Predicate Definitions

Real Numbers
Domain of Discourse



Rationality

Prove: “If x and y are rational then xy is rational.”

Proof: Let x and y be rational numbers.  Then, x = a/b 
for some integers a, b, where b0, and y = c/d for some 
integers c,d, where d0. 
Multiplying, we get that xy = (ac)/(bd).  
Since b and d are both non-zero, so is bd; furthermore, 
ac and bd are integers.  It follows that xy is rational, by 
definition of rational.

Real Numbers
Domain of Discourse

Rational(x) 
Predicate Definitions



Proofs

• Formal proofs follow simple well-defined rules and 
should be easy to check
– In the same way that code should be easy to execute

• English proofs correspond to those rules but are 
designed to be easier for humans to read
– Easily checkable in principle

• Simple proof strategies already do a lot
– Later we will cover a specific strategy that applies to 

loops and recursion (mathematical induction)



Set Theory

Sets are collections of objects called elements. 

Write a B to say that a is an element of set B,
and a B to say that it is not.

Some simple examples
A = {1}
B = {1, 3, 2}
C = {☐, 1}
D = {{17}, 17}
E = {1, 2, 7, cat, dog, , α}



Some Common Sets

is the set of Natural Numbers; = {0, 1, 2, …}
is the set of Integers; = {…, -2, -1, 0, 1, 2, …}
is the set of Rational Numbers; e.g. ½, -17, 32/48
is the set of Real Numbers; e.g. 1, -17, 32/48, π,  

[n] is the set {1, 2, …, n} when n is a natural number
{} =  is the empty set; the only set with no elements



Sets can be elements of other sets

For example
A = {{1},{2},{1,2},}
B = {1,2}

Then B A.



Definitions

• A and B are equal if they have the same elements

• A is a subset of B if every element of A is also in B

• Note:

A = B    x (x  A  x  B)

A  B   x (x  A  x  B)



Definition: Equality

A and B are equal if they have the same elements

A = B    x (x  A  x  B)

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}
D = {4, 3, 3}
E = {3, 4, 3}
F = {4, {3}}

Which sets are equal to each other?



Definition: Subset

A is a subset of B if every element of A is also in B

A  B   x (x  A  x  B)

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}

QUESTIONS
 A?
A  B?
C  B?



S = the set of all* x for which P(x) is true

S = the set of all x in A for which P(x) is true

Building Sets from Predicates

S = {x : P(x)}

S = {x  A : P(x)}

*in the domain of P, usually called the “universe” U



Set Operations

Union

Intersection

Set Difference

A = {1, 2, 3}
B = {3, 5, 6} 
C = {3, 4}

QUESTIONS
Using A, B, C and set operations, make…
[6] =
{3} =
{1,2} =



More Set Operations

(with respect to universe U)                   

Symmetric
Difference

Complement

A = {1, 2, 3}
B = {1, 2, 4, 6} 
Universe:
U = {1, 2, 3, 4, 5, 6}

A B = {3, 4, 6}
= {4,5,6}



It’s Boolean algebra again

• Definition for  based on 

• Definition for  based on 

• Complement works like 



De Morgan’s Laws

Proof technique:
To show C = D show
x  C  x  D and
x  D  x  C



Distributive Laws

C

A B

C

A B



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

(Days)=

()=?



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

(Days)= 

()={} 



Cartesian Product

is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.



Representing Sets Using Bits

• Suppose universe is 

• Can represent set as a vector of bits: 

where when 

when 

– Called the characteristic vector of set B

• Given characteristic vectors for and 

– What is characteristic vector for ?  ?



UNIX/Linux File Permissions

• ls –l

drwxr-xr-x ... Documents/

-rw-r--r-- ... file1

• Permissions maintained as bit vectors
– Letter means bit is 1 

– “--” means bit is 0.



Bitwise Operations

01101101                Java: z=x|y
 00110111

01111111              

00101010 Java: z=x&y
 00001111

00001010  

01101101                Java: z=x^y
 00110111

01011010



A Useful Identity

• If x and y are bits:  (x y) y = ?

• What if x and y are bit-vectors?



Private Key Cryptography

• Alice wants to communicate message secretly to 
Bob so that eavesdropper Eve who hears their 
conversation cannot tell what Alice’s message is.

• Alice and Bob can get together and privately share 
a secret key K ahead of time.



One-Time Pad

• Alice and Bob privately share random n-bit vector K 
– Eve does not know K

• Later, Alice has n-bit message m to send to Bob
– Alice computes  C = m  K

– Alice sends C to Bob

– Bob computes m = C  K which is (m  K)  K

• Eve cannot figure out m from C unless she can 
guess K



Russell’s Paradox

Suppose for contradiction that …



Russell’s Paradox

Suppose for contradiction that .  Then, by definition of 
, , but that’s a contradiction.

Suppose for contradiction that .  Then, by definition of 
the set , , but that’s a contradiction, too.

This is reminiscent of the truth value of the statement “This 
statement is false.”


