
CSE 311: Foundations of Computing

Lecture 9:  English Proofs, Strategies, Set Theory



Last class: Inference Rules for Quantifiers

x P(x)        
P(a) for any a

P(c) for some c
x P(x)

Intro  Elim 

* in the domain of P.  No other   
name in P depends on a 

** c is a NEW name. 
List all dependencies for c.

“Let a be arbitrary*”...P(a)
x P(x)

Intro  x P(x)
P(c) for some special** c

Elim 



Last class: Even and Odd

Prove: “The square of every even number is even.”
Formal proof of:  x (Even(x)  Even(x2))

1. Let a be an arbitrary integer
2.1   Even(a) Assumption
2.2 y (a = 2y) Definition of Even
2.3   a = 2b Elim : b special depends on a
2.4 
2.5 y (a2 = 2y) Intro  rule
2.6  Even(a2) Definition of Even

2.   Even(a)Even(a2) Direct proof rule
3.   x (Even(x)Even(x2))         Intro : 1,2

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 
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Prove: “The square of every even number is even.”
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1. Let a be an arbitrary integer
2.1   Even(a) Assumption
2.2 y (a = 2y) Definition of Even
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English Proof: Even and Odd

Prove “The square of every even integer is even.”

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 

1. Let a be an arbitrary integer
2.1   Even(a) Assumption

2.2   y (a = 2y) Definition
2.3   a = 2b b special depends on a

2.4   a2 = 4b2 = 2(2b2) Algebra

2.5 y (a2 = 2y)
2.6  Even(a2) Definition

2.   Even(a)Even(a2)
3.   x (Even(x)Even(x2))

English Proof:
(translate from right)



English Proof: Even and Odd

Prove “The square of every even integer is even.”

Even(x)  y  (x=2y)     
Odd(x)   y  (x=2y+1)
Domain: Integers 

1. Let a be an arbitrary integer
2.1   Even(a) Assumption

2.2   y (a = 2y) Definition
2.3   a = 2b b special depends on a

2.4   a2 = 4b2 = 2(2b2) Algebra

2.5 y (a2 = 2y)
2.6  Even(a2) Definition

2.   Even(a)Even(a2)
3.   x (Even(x)Even(x2))

Proof: Let a be an arbitrary 
even integer.  

Then, by definition, a = 2b
for some integer b
(depending on a).

Squaring both sides, we get 
a2 = 4b2 = 2(2b2). 

Since 2b2 is an integer, by 
definition, a2 is even.

Since a was arbitrary, it 
follows that the square of 
any even integer is even.



Even and Odd

Prove “The square of every odd integer is odd.”

Even(x) 
Odd(x) 

Predicate Definitions

Integers
Domain of Discourse



Even and Odd

Prove “The square of every odd integer is odd.”

Proof: Let b be an arbitrary odd integer.
Then, b = 2c+1 for some integer c (depending on b).
Therefore, b2 = (2c+1)2 =  4c2 + 4c + 1 = 2(2c2 + 2c) + 1.
Since 2c2+2c is an integer, b2 is odd.   Since b was 
arbitrary, the square of every odd integer is odd.      

Even(x) 
Odd(x) 

Predicate Definitions

Integers
Domain of Discourse



Proof Strategies: Counterexamples

To disprove x P(x) prove  P(x) :

• Works by de Morgan’s Law:

• All we need to do that is find an for which is 
false

• This example is called a counterexample to  .

e.g. Disprove “Every prime number is odd”



Proof Strategies: Proof by Contrapositive

If we assume q and derive p, then we have proven  
q p, which is equivalent to proving p  q.

1.1.  Assumption

...

1.3. 
1.   Direct Proof Rule

2.  Contrapositive: 1                       



Proof by Contradiction:  One way to prove p

If we assume p and derive F (a contradiction), then 
we have proven p.

1.1.  Assumption

...

1.3.  

1.    Direct Proof rule

2.     Law of Implication: 1

3.    Identity: 2



Even and Odd

Prove: “No integer is both even and odd.”
English proof:  x (Even(x)Odd(x)) 

x (Even(x)Odd(x))

Even(x) 
Odd(x) 

Predicate Definitions

Integers
Domain of Discourse



Even and Odd

Prove: “No integer is both even and odd.”
English proof:  x (Even(x)Odd(x)) 

x (Even(x)Odd(x))

Proof: We work by contradiction. Let x be an arbitrary 
integer and suppose that it is both even and odd.   
Then x=2a for some integer a and x=2b+1 for some 
integer b.   Therefore 2a=2b+1 and hence a=b+½.
But two integers cannot differ by ½ so this is a 
contradiction.  So, no integer is both even and odd.

Even(x) 
Odd(x) 

Predicate Definitions

Integers
Domain of Discourse



Rational Numbers

• A real number x is rational iff there exist integers p
and q with q0 such that x=p/q.

Rational(x)  p q  ((x=p/q)  Integer(p)  Integer(q)  q0)    

Real Numbers
Domain of Discourse



Rationality

Prove: “If x and y are rational then xy is rational.”

Rational(x) 
Predicate Definitions

Real Numbers
Domain of Discourse



Rationality

Prove: “If x and y are rational then xy is rational.”

Proof: Let x and y be rational numbers.  Then, x = a/b 
for some integers a, b, where b0, and y = c/d for some 
integers c,d, where d0. 
Multiplying, we get that xy = (ac)/(bd).  
Since b and d are both non-zero, so is bd; furthermore, 
ac and bd are integers.  It follows that xy is rational, by 
definition of rational.

Real Numbers
Domain of Discourse

Rational(x) 
Predicate Definitions



Proofs

• Formal proofs follow simple well-defined rules and 
should be easy to check
– In the same way that code should be easy to execute

• English proofs correspond to those rules but are 
designed to be easier for humans to read
– Easily checkable in principle

• Simple proof strategies already do a lot
– Later we will cover a specific strategy that applies to 

loops and recursion (mathematical induction)



Set Theory

Sets are collections of objects called elements. 

Write a B to say that a is an element of set B,
and a B to say that it is not.

Some simple examples
A = {1}
B = {1, 3, 2}
C = {☐, 1}
D = {{17}, 17}
E = {1, 2, 7, cat, dog, , α}



Some Common Sets

is the set of Natural Numbers; = {0, 1, 2, …}
is the set of Integers; = {…, -2, -1, 0, 1, 2, …}
is the set of Rational Numbers; e.g. ½, -17, 32/48
is the set of Real Numbers; e.g. 1, -17, 32/48, π,  

[n] is the set {1, 2, …, n} when n is a natural number
{} =  is the empty set; the only set with no elements



Sets can be elements of other sets

For example
A = {{1},{2},{1,2},}
B = {1,2}

Then B A.



Definitions

• A and B are equal if they have the same elements

• A is a subset of B if every element of A is also in B

• Note:

A = B    x (x  A  x  B)

A  B   x (x  A  x  B)



Definition: Equality

A and B are equal if they have the same elements

A = B    x (x  A  x  B)

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}
D = {4, 3, 3}
E = {3, 4, 3}
F = {4, {3}}

Which sets are equal to each other?



Definition: Subset

A is a subset of B if every element of A is also in B

A  B   x (x  A  x  B)

A = {1, 2, 3}
B = {3, 4, 5}
C = {3, 4}

QUESTIONS
 A?
A  B?
C  B?



S = the set of all* x for which P(x) is true

S = the set of all x in A for which P(x) is true

Building Sets from Predicates

S = {x : P(x)}

S = {x  A : P(x)}

*in the domain of P, usually called the “universe” U



Set Operations

Union

Intersection

Set Difference

A = {1, 2, 3}
B = {3, 5, 6} 
C = {3, 4}

QUESTIONS
Using A, B, C and set operations, make…
[6] =
{3} =
{1,2} =



More Set Operations

(with respect to universe U)                   

Symmetric
Difference

Complement

A = {1, 2, 3}
B = {1, 2, 4, 6} 
Universe:
U = {1, 2, 3, 4, 5, 6}

A B = {3, 4, 6}
= {4,5,6}



It’s Boolean algebra again

• Definition for  based on 

• Definition for  based on 

• Complement works like 



De Morgan’s Laws

Proof technique:
To show C = D show
x  C  x  D and
x  D  x  C



Distributive Laws

C

A B

C

A B



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

(Days)=

()=?



Power Set

• Power Set of a set A = set of all subsets of A

• e.g., let Days={M,W,F} and consider all the possible sets 
of days in a week you could ask a question in class

(Days)= 

()={} 



Cartesian Product

is the real plane.  You’ve seen ordered pairs before.

These are just for arbitrary sets.

is “the set of all pairs of integers”

If A = {1, 2}, B = {a, b, c}, then A B = {(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.



Representing Sets Using Bits

• Suppose universe is 

• Can represent set as a vector of bits: 

where when 

when 

– Called the characteristic vector of set B

• Given characteristic vectors for and 

– What is characteristic vector for ?  ?



UNIX/Linux File Permissions

• ls –l

drwxr-xr-x ... Documents/

-rw-r--r-- ... file1

• Permissions maintained as bit vectors
– Letter means bit is 1 

– “--” means bit is 0.



Bitwise Operations

01101101                Java: z=x|y
 00110111

01111111              

00101010 Java: z=x&y
 00001111

00001010  

01101101                Java: z=x^y
 00110111

01011010



A Useful Identity

• If x and y are bits:  (x y) y = ?

• What if x and y are bit-vectors?



Private Key Cryptography

• Alice wants to communicate message secretly to 
Bob so that eavesdropper Eve who hears their 
conversation cannot tell what Alice’s message is.

• Alice and Bob can get together and privately share 
a secret key K ahead of time.



One-Time Pad

• Alice and Bob privately share random n-bit vector K 
– Eve does not know K

• Later, Alice has n-bit message m to send to Bob
– Alice computes  C = m  K

– Alice sends C to Bob

– Bob computes m = C  K which is (m  K)  K

• Eve cannot figure out m from C unless she can 
guess K



Russell’s Paradox

Suppose for contradiction that …



Russell’s Paradox

Suppose for contradiction that .  Then, by definition of 
, , but that’s a contradiction.

Suppose for contradiction that .  Then, by definition of 
the set , , but that’s a contradiction, too.

This is reminiscent of the truth value of the statement “This 
statement is false.”


