CSE 311: Foundations of Computing

Lecture 9: English Proofs, Strategies, Set Theory
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Last class: Inference Rules for Quantifiers

— P(c) for some c — Vx P(x)

Ix P(x)/ \ P(a) for any a

/ 3x P(x)

- Let a be arbitrary*”...P(a) ' [Eim3

Vx P(x) = P(c) for some special** c

*in the domain of P. No other ** cis a NEW name.
name in P depends on a List all dependencies for c.




Even(x) =3y (x=2y)
Last class: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

T
1. Let a be an arbitrary integer
2.1 Even(a) Assumption
2.2 3dy(a=2y) Definition of Even
2.3 a=2b Elim 3: b special depends on a
24 7 - (960D
2.5 Ely@= 2y) Intro d rule
.6 Even(a?) Definition of Even
2. (Even(aj=¥Even(a?)s Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2
= —




Even(x) =3y (x=2y)
Last class: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 3dy(a=2y) Definition of Even
2.3 a=2b Elim 3: b special depends on a
[2.4 a’=4b?=2(2b%?) Algebra
2.5 3y (a?=2y) Intro 3 rule
2.6 Even(a?) Definition of Even
2. Even(a)—>Even(a?) Direct proof rule

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) =3y (x=2y)
English Proof: Even and Odd 0dd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

English Proof: 1. Let a be an arbitrary integer
(translate from right) 2.1 Even(a) Assumption

2.2 dy(a=2y) Definition
2.3 a=2b b special depends on a

2.4 a’?=4b?%=2(2b?) Algebra

2.5 3y (az=2y)
2.6 Even(a?) Definition

2. Even(a)—>Even(a?)
3. Vx (Even(x)—Even(x?))



Even(x) =3y (x=2y)
English Proof: Even and Odd 0dd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

Proof: Let a be an arbitrary 1. Let a be an arbitrary integer
even integer. ¢ 2.1 Even(a) Assumption

Then, by definition, a = 2b (2_2 Jy (a=2y)  Definition
for some integer b 23 a=2b b special depends on a
(depending on a).

Squaring both sides, we get 2.4 a’=4b?=2(2b?) Algebra
aZ=4b2=2(2b?).

Since 2b? is an integer, by 2.5 3y (a’=2y)

definition, aZis even. 2.6 Even(a?) Definition
Since a was arbitrary, it 2. Even(a)—Even(a?)

follows that the square of 3. Vx(Even(x)—Even(x?))

any even integer is even. B



Predicate Definitions

Even(x) =3y (x = 2y)
Even and Odd |0 Y = o 1)

Domain of Discourse
Integers

Prove “The square of every odd integer is odd.”
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Predicate Definitions - -
Domain of Discourse

Even(x) =3y (x = 2y)
Even and Odd 0dd(x) = 3y (x = 2y + 1) | Integers

Prove “The square of every odd integer is odd.”

Proof: Let b be an arbitrary odd integer.
Then, b = 2c+1 for some integer c (depending on b).
Therefore, b?=(2c+1)?= 4c?+4c+ 1 =2(2c?+ 2c) + 1.

Since 2c%+2c is an integer, b? is odd. Since b was
arbitrary, the square of every odd integer is odd. &




Proof Strategies: Counterexamples

To disprove Vx P(x) prove 3—P(x) :
* Works by de Morgan’s Law: =Vx P(x) = 3x—P(x)

 All we need to do that is find an x for which P(x) is
false

* This example is called a counterexample to Vx P(x).

PO = Roime (W) ¢ Odd (k) N

N (S IRVAST ¥ ()
. I . H " \U)AF(&'S
e.g. Disprove “Every prime number is odd
_’?QJ; 7 (Qrwe () = D8HN
Prpe 2\ n—0ddG) = (= Por(s) U DSFLEN
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Proof Strategies: Proof by Contrapositive

If we assume —q and derive —p, then we have proven
—0q — —p, which is equivalent to proving p — q.

£ 1.1. —q Assumption

1. -q—>—p Direct Proof Rule

2. p—>q i Contrapositive: 1




Proof by Contradiction: One way to prove @

If we assume p and derive F (a contradiction), then
we have proven —p.

1.1. p  Assumption

——

1.3. F
1. L_i Direct Proof rule
((2 —p Vv F Law of Implication: 1
Ildentity: 2



Predicate Definitions : :
Even and Odd Even(x) = Jy (x — Zy) Domain of Discourse
Odd(x) =3y (x = 2y + 1) ! Integers

Prove: “No integer is both even and odd.”

English proof: — dx (Even(x)AOdd(x))
=Vx —(Even(x)AOdd(x))
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Predicate Definitions

Domain of Discourse

Even and Odd  [Evenix) =3y (x = 2y)

odd{x)=3y (x = 2y + 1) Integers
Prove: “No integer is both even and odd.”
English proof: — dx (Even(x)AOdd(x))
=Vx —(Even(x)AOdd(x))

Proof: We work by contradiction. Let x be an arbitrary
integer and suppose that it is both even and odd.
Then x=2a for some integer a and x=2b+1 for some
integer b. Therefore 2a=2b+1 and hence a=b+.

But two integers cannot differ by %2 so this is a
contradiction. So, no integer is both even and odd. B



Domain of Discourse

Rational Numbers | Real Numbers

* A real number x is rational iff there exist integers p
and q with g=0 such that x=p/q.

Rational(x) =3dp 3q ((x=p/q) A Integer(p) A Integer(q) A g=0)

//_—-—)\




Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

Prove: “If x and y are rational then xy is rational.”
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Domain of Discourse

Rationality | Real Numbers

Predicate Definitions

Rational(x) =3p 3q ((x = p/q) A Integer(p) A Integer(q) A (g # 0))

Prove: “If x and y are rational then xy is rational.”

Proof: Let x and y be rational numbers. Then, x=a/b
for some integers a, b, where b0, and y = ¢/d for some
integers c,d, where d=+0.

Multiplying, we get that xy = (ac)/(bd).

Since b and d are both non-zero, so is bd; furthermore,
ac and bd are integers. It follows that xy is rational, by
definition of rational. u




Proofs

 Formal proofs follow simple well-defined rules and
should be easy to check
— In the same way that code should be easy to execute

* English proofs correspond to those rules but are
desighed to be easier for humans to read

— Easily checkable in principle

* Simple proof strategies already do a lot

— Later we will cover a specific strategy that applies to
loops and recursion (mathematical induction)



Set Theory

Sets are collections of objects called elements.

Write a2 € B to say that a is an element of set B,
and a & B to say that it is not.

Some simple examples
A={1} —

B={1,3,2} —
c={,1} ——
D={{17},17} —
E={1,2,7, cat, dog, &, a}

—_—




Some Common Sets .

Nb‘\‘\ﬂﬁﬂbs L %L

N is the set ofd&f === Numbers; N={0, 1, 2, ...}

Z is the set of Integers; Z =1{...,-2,-1,0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. 5, -17, 32/48
R is the set of Real Numbers; e.g. 1, -17, 32/48, m,\/2
[n] is the set {1, 2, ..., n} when n is a natural number
{} = D is the empty set; the only set with no elements

—




Sets can be elements of other sets

For example

A= {i}?};g};{lrz}l@} b(

B = {1,2}f

Then B € A.




Definitions

A and B are equal if they have the same elements

A=B EVx(xeA%;EE B)

> A E&—

* Ais asubset of B if every element of A is a\l_s/o inB

-
AgBEVX(XeA@YE B)

. Note: (A=B) = (AC B) A(BC A)

e




Definition: Equality

A and B are equal if they have the same elements

A=B =V x(xe A x e B)

A={1, 2, 3}
B=1{3, 4,5}
C=1{3, 4}
D=14,3,3;} Which sets are equal to each other?
E={3,4, 3}
F={4,{3}}




Definition: Subset

A is a subset of B if every element of A is also in B

AcB=Vx(xeA—>xeB)

A=1{1, 2, 3}
B={3, 4,5}
C=1{3, 4}
QUESTIONS
< A?
Ac B?

CcB?




Building Sets from Predicates

S = the set of all* x for which P(x) is true

S ={x:P(x)}

S = the set of all x in A for which P(x) is true

S={x € A:P(x)}

“in the domain of P, usually called the “universe” U



Set Operations

AUB={x:(x€A)V(x €B)} Union

ANB={x:(x€A)A(x €B)} |Intersection

A\B={x:(x€A)AN(x &B)} SetDifference

A={1, 2, 3} QUESTIONS
B={3,5, 6} Using A, B, C and set operations, make...
C={3,4} [6] =

3} =
{1,2} =




More Set Operations

ADB={x:(x€A) D (xeB)}

Symmetric

A={x:x¢A)}

(with respect to universe U)

A={1, 2, 3}

B={1, 2, 4, 6}
Universe:

U={1, 2,3, 4,5, 6}

A B-={3 4,6}
A={45,6}

Difference

Complement



It's Boolean algebra again

 Definition for U based on v

 Definition for N based on A

« Complement works like —



De Morgan’s Laws

AUB=ANBA

ANB=AUB

Proof technique:

To show C = D show
X e C—> x e Dand
xeD—-oxeC



Distributive Laws

AN(BUC)=ANB)UANC)
AUBNC)=(AUB)Nn (4 UC)

vl



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:Bc A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)=?

P(D)=?



Power Set

 Power Set of a set A = set of all subsets of A

P(A)={B:Bc A}

« e.g., let Days={M,W,F} and consider all the possible sets
of days in a week you could ask a question in class

P(Days)={{M, W, F}, {M, W}, {M, F}, {W, F}, {M}, {W3}, {F}, &}

P(QD)={D} + &



Cartesian Product

AXB={(a,b):a€AbeB}

R X R is the real plane. You've seen ordered pairs before.
These are just for arbitrary sets.
7. X 7.is “the set of all pairs of integers”

If A={1, 2}, B={a, b, c}, then A X B ={(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

AXP={(a,b):acANDbeP}={(a,b):a€A ANF} =0



Representing Sets Using Bits

* Suppose universe U is {1,2, ...,n}
 Can represent set B € U as a vector of bits:
bib, ...b, where b; =1wheni€RB
bi = 0wheni & B
— Called the characteristic vector of set B

 Given characteristic vectors for A and B
— What is characteristic vector for AU B? AN B?



UNIX/Linux File Permissions

e 1s -1
drwxr-xr-x ... Documents/

-rw-r--r—-- ... filel

e Permissions maintained as bit vectors
— Letter means bitis 1
— “=" means bit is O.



Bitwise Operations

01101101 Java: z=x|y
v 00110111
01111111

00101010 Java: z=xé&y
A 00001111
00001010

01101101 Java: z=x"y
@© 00110111
01011010




A Useful ldentity

 [fxand y are bits: x@y)Py="?

* What if x and y are bit-vectors?



Private Key Cryptography

* Alice wants to communicate message secretly to
Bob so that eavesdropper Eve who hears their
conversation cannot tell what Alice’s message is.

* Alice and Bob can get together and privately share
a secret key K ahead of time.

encrypl | ; decrypl

: i
|
! | |
: plaintext ' ciphertext ! plaintext '
ISENDER————» key | | > | key —— RECEIVER |
! message . ! message .
| 1
| - : i

STy TR II""'—__l

N e A

Fad ' S




One-Time Pad

* Alice and Bob privately share random n-bit vector K
— Eve does not know K

* Later, Alice has n-bit message m to send to Bob
— Alice computes C=m @ K
— Alice sends C to Bob
— Bob computes m = C @ K which is (m @ K) @ K

* Eve cannot figure out m from C unless she can
guess K




Russell’s Paradox

S={x:x€&x}

Suppose for contradiction that S € S...



Russell’s Paradox

S={x:x€&x}

Suppose for contradiction that S € S. Then, by definition of
S,S &S, but that’s a contradiction.

Suppose for contradiction that S € S. Then, by definition of
the set S, S € S, but that’s a contradiction, too.

This is reminiscent of the truth value of the statement “This
statement is false.”



