Lecture 8: Predicate Logic Proofs

MY MATH TEACHER WAS A BIG BELIEVER IN PROOF BY INTIMIDATION.

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Not like other rules

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.- $(p \rightarrow q) \land (q \rightarrow r)$ Assumption
1.2. $p \rightarrow q$ \land Elim: 1.1
1.3. $q \rightarrow r$ \land Elim: 1.1
1.4.1. p Assumption
1.4.2. q MP: 1.2, 1.4.1
1.4.3. r MP: 1.3, 1.4.2
1.4. $p \rightarrow r$ Direct Proof Rule
1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof Rule

- Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Inference Rules for Quantifiers: First look

Can use

Predicate logic inference rules

whole formulas only

– Predicate logic equivalences (De Morgan's) even on subformulas

- Propositional logic inference rules

whole formulas only

- Propositional logic equivalences even on subformulas

The main connective is implication so Direct Proof Rule seems good

Prove $\forall x P(x) \rightarrow \exists x P(x)$

No holes. Just need to clean up.

1.1. $\forall x P(x)$ Assumption1.2 P(a)Elim $\forall: 1.1$

1.5. $\exists x P(x)$ Intro $\exists : 1.2$ **1.** $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

Prove $\forall x P(x) \rightarrow \exists x P(x)$

- **1.1.** $\forall x P(x)$ Assumption **1.2** P(a) Elim \forall : **1.1**
- **1.3.** $\exists x P(x)$ Intro $\exists: 1.2$

- 1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof Rule

Working forwards as well as backwards:

In applying "Intro \exists " rule we didn't know what expression we might be able to prove P(c) for, so we worked forwards to figure out what might work.

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example:

 Given the basic properties of arithmetic on integers, define:

Predicate DefinitionsEven(x) =
$$\exists y (x = 2 \cdot y)$$
Odd(x) = $\exists y (x = 2 \cdot y + 1)$

A Not so Odd Example

Domain of Discourse Integers

Predicate DefinitionsEven(x) =
$$\exists y (x = 2 \cdot y)$$
Odd(x) = $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

1.
$$D = 2.0$$

T. $Jy(0 = 2y)$ Arithmetic
2. $Jy(0 = 2y)$ Juntice
3. Even(0) Define of Even
1. $Jx Even(x)$ Junto: 7.

A Not so Odd Example

Domain of Discourse Integers $\frac{\text{Predicate Definitions}}{\text{Even}(x) \equiv \exists y (x = 2 \cdot y)}$ $Odd(x) \equiv \exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

1.	2 = 2·1	Arithmetic
2.	∃y (2 = 2 ·y)	Intro ∃: 1
3.	Even(2)	Definition of Even: 2
4.	∃x Even(x)	Intro ∃: 3

A Prime Example

Domain of Discourse Integers

Predicate Definitions $Even(x) \equiv \exists y (x = 2 \cdot y)$ $Odd(x) \equiv \exists y (x = 2 \cdot y + 1)$ $Prime(x) \equiv "x > 1 \text{ and } x \neq a \cdot b \text{ for}$ all integers a, b with 1 < a < x''

Prove "There is an even prime number"

A Prime Example

Domain of Discourse Integers

Predicate Definitions

Even(x) = $\exists y (x = 2 \cdot y)$ Odd(x) = $\exists y (x = 2 \cdot y + 1)$ Prime(x) = "x > 1 and x≠a · b for all integers a, b with 1<a<x"

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

1. $2 = 2 \cdot 1$ Arithmetic \sim 2.Prime(2)*Property of integers3. $J_{\gamma}(2 = 2 \cdot \gamma)$ $I_{M_{00}} \neq I$ \sim $I_{\gamma}(2 = 2 \cdot \gamma)$ $I_{\gamma}(2 = 2 \cdot \gamma)$ \sim $I_{\gamma}(2 = 2 \cdot \gamma)$ $I_{\gamma}(2 = 2 \cdot \gamma)$ \sim $I_{\gamma}(2 = 2 \cdot \gamma)$ $I_{\gamma}(2 = 2 \cdot \gamma)$ \sim $I_{\gamma}(2 = 2 \cdot \gamma)$ $I_{\gamma}(2 = 2 \cdot \gamma)$ \sim $I_{\gamma}(2 = 2 \cdot \gamma)$ $I_{\gamma}(2 = 2 \cdot \gamma)$

* Later we will further break down "Prime" using quantifiers to prove statements like this

A Prime Example

Domain of Discourse Integers Predicate Definitions

Even(x) $\equiv \exists y (x = 2 \cdot y)$ Odd(x) $\equiv \exists y (x = 2 \cdot y + 1)$ Prime(x) $\equiv "x > 1$ and $x \neq a \cdot b$ for all integers a, b with 1<a<x"

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

1.	$2 = 2 \cdot 1$	Arithmetic
2.	Prime(2)*	Property of integers
3.	∃y (2 = 2 ·y)	Intro ∃: 1
4.	Even(2)	Defn of Even: 3
5.	Even(2) ^ Prime(2)	Intro ∧: 2, 4
6.	$\exists x (Even(x) \land Prime(x))$	Intro ∃: 5

* Later we will further break down "Prime" using quantifiers to prove statements like this

Inference Rules for Quantifiers: First look

Even and Odd	Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers				
$\underbrace{Intro \forall}^{\text{`Intro } \forall} \underbrace{\text{Let a be arbitrary}^{*"} \dots P(a)}_{ \therefore \forall x P(x)} \underbrace{\text{Elim } \exists}_{ \therefore P(x)}$	∃x P(x) (c) for some <i>special</i> * * c				
Prove: "The square of every even number is even."					
Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$					
1. Let a be an arbitrary integration 2.1 Even(a) 2.2 $\exists y (a = 2y)$ 2.3 $a = 2b$	ger Assumption Definition of Even Elim∃: b special depends on a				
 	Intro \exists rule:Need $a^2 = 2c$ for some cDefinition of EvenNeed $a^2 = 2c$ for some cDirect proof rule				

3. $\forall x (Even(x) \rightarrow Even(x^2))$ Intro $\forall : 1, 2$

Even and Odd	Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers			
$\begin{array}{c c} \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \hline & & \\ \hline & & \\ \hline \hline \\ \hline & & \\ \hline \hline & & \\ \hline \hline \\ \hline \hline & & \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline$	cial** c			
Prove: "The square of every even number is even."				
Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$				
1. Let a be an arbitrary integer				
2.1 Even(a) Assumption				
2.2 $\exists y (a = 2y)$ Definition of	Even			
2.3 a = 2b Elim ∃: b spe	cial depends on a			
2.4 $a^2 = 4b^2 = 2(2b^2)$ Algebra				
2.5 ∃y (a² = 2y) - 5 Intro∃rule	Used $a^2 = 2c$ for $c=2b^2$			
2.6 Even(a ²) Definition of	Even			
2. Even(a) \rightarrow Even(a ²) Direct proof	rule			
$2 \forall (\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}$				

3. $\forall x (Even(x) \rightarrow Even(x^2))$ Intro $\forall : 1, 2$

Why did we need to say that **b** depends on **a**?

Why did we need to say that **b** depends on **a**?

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

Can't get rid of a since another name in the same line, b, depends on it!

Why did we need to say that **b** depends on **a**?

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

- We often write proofs in English rather than as fully formal proofs
 - They are more natural to read
- English proofs follow the structure of the corresponding formal proofs
 - Formal proof methods help to understand how proofs really work in English...

... and give clues for how to produce them.

An English Proof

Predicate DefinitionsEven(x) = $\exists y (x = 2 \cdot y)$ Odd(x) = $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even integer"

Proof: Arithmetic $2 = 2 \cdot 1$ **1**. **2** = $2 \cdot 1$ so 2 equals 2 times an **2.** $\exists y (2 = 2 \cdot y)$ Intro $\exists : 1$ integer. Defn of Even: 2 3. Even(2) Therefore **2** is even. ▲ 4. ∃x Even(x) Intro ∃: 3 Therefore, there is an even integer

English Even and Odd

Prove "The square of every even integer is even."

Proof: Let a be an arbitrary 1. even integer. 2	Let a be an arb 2.1 Even(a)				
	2.2 ∃y (a = 2y) 2.3 a = 2b	Definition b special depends on a			
Squaring both sides, we get $2.4 a^2 = 4b^2 = 2(2b^2)$ Algebra $a^2 = 4b^2 = 2(2b^2)$.					
	2.5 ∃y (a² = 2y) 2.6 Even(a²)	Definition			
Since a was arbitrary, it follows that the square of every even number is even. \blacksquare 2. Even(a) \rightarrow Even(a ²) 3. $\forall x (Even(x) \rightarrow Even(x2))$					

Predicate Definitions Even(x) = $\exists y \ (x = 2y)$ Odd(x) = $\exists y \ (x = 2y + 1)$

Prove "The square of every odd number is odd."

Predicate Definitions Even(x) = $\exists y \ (x = 2y)$ Odd(x) = $\exists y \ (x = 2y + 1)$

Prove "The square of every odd number is odd."

Proof: Let b be an arbitrary odd number. Then, b = 2c+1 for some integer c (depending on b). Therefore, $b^2 = (2c+1)^2 = 4c^2 + 4c + 1 = 2(2c^2 + 2c) + 1$. Since $2c^2+2c$ is an integer, b^2 is odd. The statement follows since b was arbitrary. Formal proofs follow simple well-defined rules and should be easy to check

– In the same way that code should be easy to execute

- English proofs correspond to those rules but are designed to be easier for humans to read
 - Easily checkable in principle