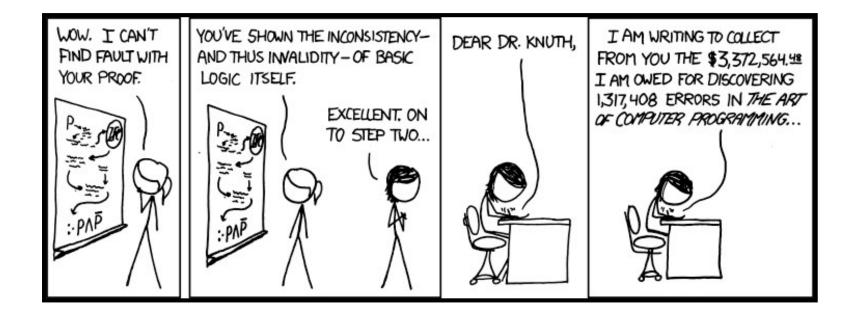
CSE 311: Foundations of Computing

Lecture 7: Logical Inference



1c: Solar Ahydrogen

'\\ _ \ \\ \'

Quantifier Order

P

$$X = \frac{1}{7/4}$$
 $X = \frac{1}{7/4}$
 X

Logical Inference

- So far we've considered:
 - How to understand and express things using propositional and predicate logic
 - How to compute using Boolean (propositional) logic
 - How to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us infer implied properties from ones that we know
 - Equivalence is a small part of this

Applications of Logical Inference

Software Engineering

- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

- Start with hypotheses and facts
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

An inference rule: Modus Ponens

- If A and $A \rightarrow B$ are both true then B must be true
- Write this rule as
 A; A → B
 ∴ B
- Given:
 - If it is Wednesday then you have a 311 class today.
 - It is Wednesday.
- Therefore, by Modus Ponens:
 - You have a 311 class today.

My First Proof!

Show that r follows from p, $p \rightarrow q$, and $q \rightarrow r$

```
1. p Given
2. p \rightarrow q Given
3. q \rightarrow r Given
4. q \rightarrow r Given
5. me^{\frac{1}{2}}
```

Modus Ponens
$$\xrightarrow{A ; A \rightarrow B}$$
 $\therefore B$

My First Proof!

Show that r follows from p, $p \rightarrow q$, and $q \rightarrow r$

```
1. p Given
```

2.
$$p \rightarrow q$$
 Given

3.
$$q \rightarrow r$$
 Given

Modus Ponens
$$\xrightarrow{A ; A \rightarrow B}$$
 $\therefore B$

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

1.
$$p \rightarrow q$$
 Given
2. $\neg q$ Given
3. $\neg q \rightarrow \neg p$ Contrapositive: 1
4. $\neg p$ MP: 2, 3

Modus Ponens
$$\xrightarrow{A ; A \rightarrow B}$$
 $\therefore B$

Inference Rules

If A is true and B is true

Requirements: A; B

Conclusions: ∴ C , D

Then, C must

be true

Then D must

be true

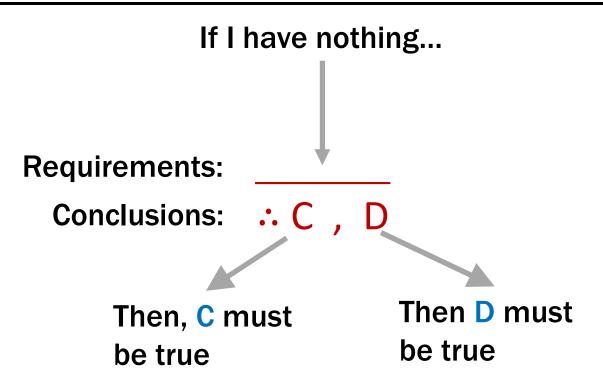
Example (Modus Ponens):

 $A : A \rightarrow B$

: E

If I have A and A \rightarrow B both true, Then B must be true.

Axioms: Special inference rules

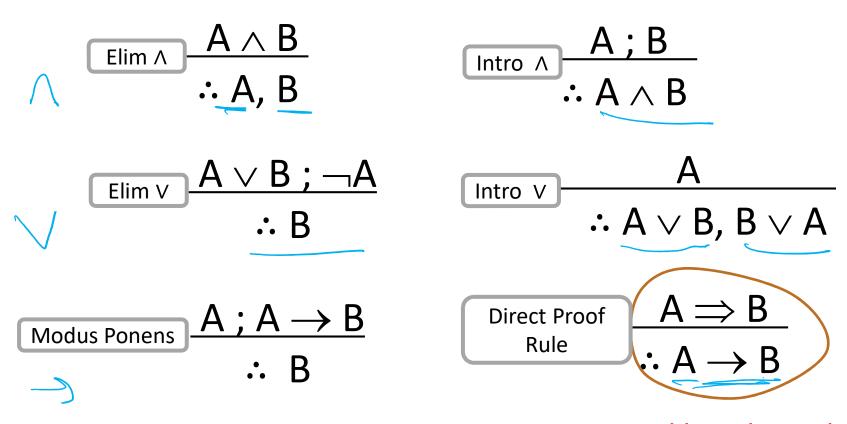


Example (Excluded Middle):

A ∨¬A must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it



Not like other rules

Show that r follows from p, p \rightarrow q and (p \land q) \rightarrow r

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

$$\begin{array}{c} A : A \to B \\ \therefore B \end{array}$$

$$\begin{array}{|c|c|}\hline A \wedge B \\ \therefore A, B \\ \hline \end{array}$$

$$\begin{array}{c} A ; B \\ \therefore A \wedge B \end{array}$$

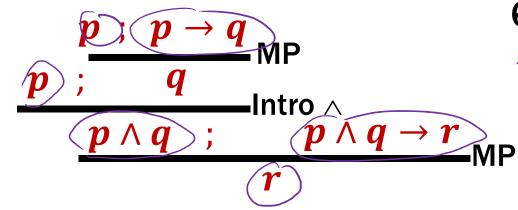
Show that r follows from $p, p \rightarrow q$, and $p \land q \rightarrow r$

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

2.
$$p \rightarrow q$$
 Given

4.
$$p \wedge q$$
 Intro \wedge : 1, 3

5.
$$p \land q \rightarrow r$$
 Given



Important: Applications of Inference Rules

You can use equivalences to make substitutions of any sub-formula.

 $\begin{array}{c} \uparrow & \uparrow & \uparrow \\ \uparrow & \rightarrow & \uparrow \end{array}$

 Inference rules only can be applied to whole formulas (not correct otherwise).

e.g. 1.
$$p \rightarrow r$$
 given 2. $(p \lor q) \rightarrow r$ intro \lor from 1.

Does not follow! e.g. p=F, q=T, r=F

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1. $p \wedge s$ Given

2. $q \rightarrow \neg r$ Given

3. $\neg s \lor q$ Given

First: Write down givens and goal

19. 9 20. ¬r

Idea: Work backwards!

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

20. ¬*r*

MP: 2,

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove q...
 - Notice that at this point, if we prove q, we've proven $\neg r$...

- **19**. *q*
- 20. ¬r

?

MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

This looks like or-elimination.

(8.7(26)

19. *q*

20. ¬*r*

MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.
$$p \wedge s$$
 Given

2.
$$q \rightarrow \neg r$$
 Given

3.
$$\neg s \lor q$$
 Given

doesn't show up in the givens but does and we can use equivalences

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.
$$p \wedge s$$
 Given

2.
$$q \rightarrow \neg r$$
 Given

3.
$$\neg s \lor q$$
 Given

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1. $p \wedge s$ Given

2. $q \rightarrow \neg r$ Given

3. $\neg s \lor q$ Given

No holes left! We just need to clean up a bit.

18. ¬¬s Double Negation: 17

19. *q* ∨ Elim: 3, 18

20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given
- 4. **s** ∧ Elim: 1
- 5. ¬¬s Double Negation: 4
- 6. *q* ∨ Elim: 3, 5
- 7. $\neg r$ MP: 2, 6

To Prove An Implication: $A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

Example: Prove $p \rightarrow (p \lor q)$.

proof subroutine

Assumption

2.
$$p \vee q$$

Intro ∨: 1

3.
$$p \rightarrow (p \lor q)$$

Direct Proof Rule

Proofs using the direct proof rule

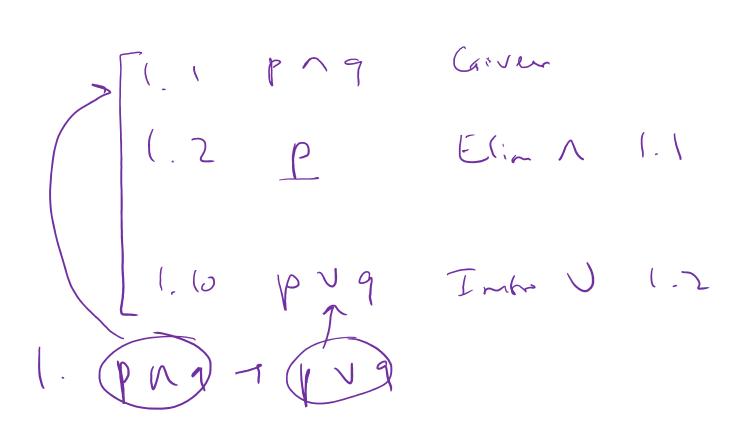
Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$ Given 2. $(p \land q) \rightarrow r$ Given **Assumption** This is a If we know p is true... proof Intro ∧: 1, 3.1 Then, we've shown MP: 2, 3.2 r is true **Direct Proof Rule**

Prove: $(p \land q) \rightarrow (p \lor q)$

-There MUST be an application of the Direct Proof Rule (or an equivalence) to prove this implication.

Where do we start? We have no givens...

Prove: $(p \land q) \rightarrow (p \lor q)$



Prove: $(p \land q) \rightarrow (p \lor q)$

1.1.
$$p \wedge q$$

1.2. *p*

1.3. $p \vee q$

 $1. \quad (p \land q) \rightarrow (p \lor q)$

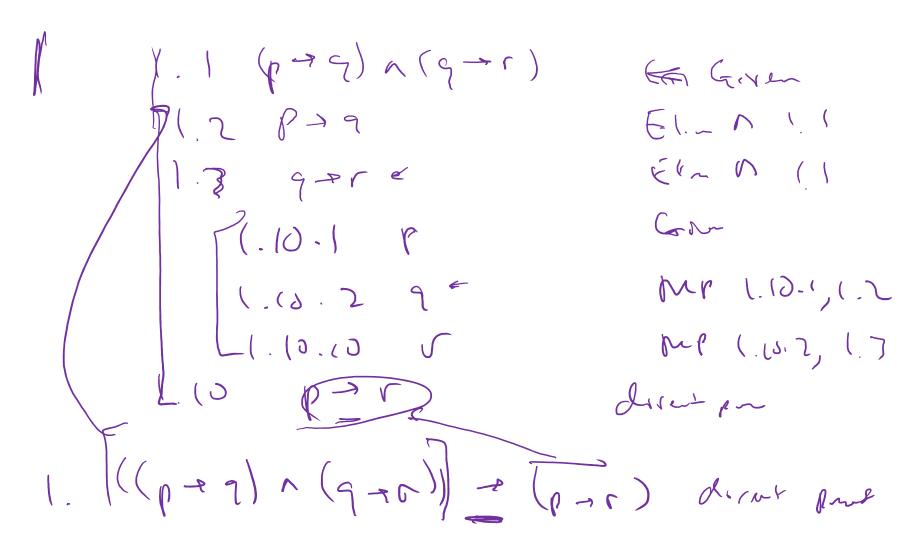
Assumption

Elim ∧: **1.1**

Intro ∨: **1.2**

Direct Proof Rule

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$



 $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof Rule

Direct Proof Rule

One General Proof Strategy

- 1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.