CSE 311: Foundations of Computing

Lecture 6: More Predicate Logic

THREE LOGICIANS WALK INTO A BAR...

DOES EVERYONE _" |
WANT BEER? |_-f

B\ B
e v

»
a '

Last class: Predicates

Predicate
— A function that returns a truth value, e.g.,

Cat(x) ::= “xis a cat”

Prime(x) ::= “x is prime”

HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x<y”

Sum(x,y, z) i=“x+y=2"

GreaterThan5(x) ::= “x > 5"

HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments
and input types.

Last class: Domain of Discourse

For ease of use, we define one “type”/“domain” that we
work over. This set of objects is called the “domain of
discourse”.

For each of the following, what might the domain be?
(1) “x is a cat”, “x barks”, “x ruined my couch”

(2) “x is prime”, “x =07, “x< 07, “x is a power of two”

(3) “x is a pre-req for z”

Domain of Discourse

For ease of use, we define one “type”/“domain” that we
work over. This set of objects is called the “domain of
discourse”.

For each of the following, what might the domain be?

(1) “x is a cat”, “x barks”, “x ruined my couch”
“mammals” or “sentient beings” or “cats and dogs” or ...

(2) “x is prime”, “x =07, “x< 07, “x is a power of two”
“numbers” or “integers” or “integers greater than 5” or ...

(3) “x is a pre-req for z”

“courses”

Last Class: Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) I @)

P(x) is true for every x in the domain QUANTIFIEE
read as “for all x, P of x”

3x P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Last class: Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x +y =2"

Determine the truth values of each of these statements:

3 Even(x) T
vxOdd() -
ox (Bven() L odd)
Ix (Even(x) A Odd(x) {
Vx Greater(x+1, x) T
T

dx (Even(x) A Prime(x))

Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) 1= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y=2")

Determine the truth values of each of these statements:

dx Even(x) T eg.2,4,6,..

Vx Odd(x) F eg.24,6,..

Vx (Even(x) v Odd(x)) T every integer is either even or odd
dx (Even(x) A Odd(x)) F nointeger is both even and odd
Vx Greater(x+1, x) T adding 1 makes a bigger number

Ix (Even(x) A Prime(x)) T Even(2) is true and Prime(2) is true

\V'X @<X) N P(~M<k) — qua\(x,@ |

Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x +y =2"

Translate the following statements to English

Vx 3y Greater(y, x)

Vx dy Greater(x, y)

Vx 3y (Greater(y, x) A Prime(y))

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

dx 3y (Sum(x, 2, y) A Prime(x) A Prime(y))

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) 1= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y=2")

Translate the following statements to English

Vx dy Greater(y, x)

For every positive integer X, there is a positive integer y, such thaty > x.
Vx dy Greater(x, y)

For every positive integer X, there is a positive integer y, such that x > y.
Vx 3y (Greater(y, x) A Prime(y))

For every positive integer X, there is a pos. int. y such thaty > x and y is prime.
Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

For each positive integer x, if X is prime, then x = 2 or x is odd.

=

Ix HWSum(x, 2,¥) A Prime(x) A Prime(y))

There exist positive integers x and y such that x + 2 =y and x and y are prime.

Statements with Quantifiers (Natural Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) 1= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y=2")

Translate the following statements to English

Vx 3y Greater(y, x) j% «7°§L$ (’“:JVJ Lj >)()
-

There is no greatest integer.

Vx dy Greater(x, y)
There is no least integer. B

y Vx 3y (Greater(y, x) A Prime(y))
For every positive integer there is a larger number that is prime.]

vx [Prime(x) > {Equal(x, 2) vOdd(X)) \ 5 pegfros ko

very prime number s either 2 or odd. P(\W
dx Jy (Sum(x, 2, y) APrime(x) A Prim@

There exist prime numbers that differ by two.

/\

English to Predicate Logic

Predicate Definitions

Domain of Discourse Cat(x) ::= “x is a cat”
Mammals | Red(x) ::= “x is red”

\LikesTofu(x) ::= “x likes tofu”)

(ALl

“Red cats like tofu”

Vot BedGd Al S Like TG0
<ﬂ\25€- (Y o-\ @

“Some red cats don’t like tofu”

9)4 W) 4 (a}r(\g i")LLLLTS(’V(K\

)

English to Predicate Logic

Predicate Definitions

Domain of Discourse Cat(x) ::= “x is a cat”
Mammals | Red(x) ::= “x is red”

\LikesTofu(x) ::= “x likes tofu”)

“Red cats like tofu”

VX ((Red(x) A Cat(x)) — LikesTofu(x))

“Some red cats don’t like tofu”

dy ((Red(y) A Cat(y)) A —LikesTofu(y))

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “x is a cat”

Mammals Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”)

—

When putting two predicates together like this, we
‘ use an “and”.

When restricting to a smaller

“Red cats like tofu” < domain in a “for all” we use

implication.
When there’s no leading
quantification, it means “for all”.
—d When restricting to a smaller
“Some red cats don’t like tofu” €— domain in an “exists” we use
and.

“Some” means “there exists”.

Negations of Quantifiers

Predicate Definitions
. PUFp|€FFUIt(X) bo= ”X |S a purple fruitn]

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one “feels” right?

Key Idea: In every domain, exactly one of a
statement and its negation should be true.

Negations of Quantifiers

Predicate Definitions
. PurpIeFrL”t(X) bo= ”X |S a purple fruitn]

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit” X
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple” K

Key ldea: In every domain, exactly one of a
statement and its negation should be true.

Domain of Discourse Domain of Discourse Domain of Discourse
{plum} | | {apple} J | {plum, apple}
(*), (a) (b), (c) (a), (b)

s (+) ()

Negations of Quantifiers

Predicate Definitions
. PUI’p|eFI'UIt(X) bo= ”X |S a purple fruit”]

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key ldea: In every domain, exactly one of a
statement and its negation should be true.

Domain of Discourse Domain of Discourse Domain of Discourse
{plum} | | {apple} J | {plum, apple}
(*), (a) (b), (c) (a), (b)

The only choice that ensures exactly one of the statement and its negation is (b).

De Morgan’s Laws for Quantifiers

— V' X P(X) = 3X — P(X) @\r{@vmw{
— 3x P(x) = VX — P(x) P

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

“There is no largest integer” Q

SIxVy (x2y),

mVy (x2>y) de Moy
S

Vx dyY(x=y)

Vx 3y (y>x)

“For every integer there is a larger integer”

Scope of Quantifiers

Ix (P(x) A Q(x)) vs. aif(x) A dx Q(x)

scope of quantifiers

I (P)AQK) vs. (3xP(x)NIx QX))

This one asserts P This one asserts P and Q
and Q of the same x. of potentially different x’s.

Scope of Quantifiers L,

A

Y \

Example: Notlargest(x) = 3y Greater (y, x)/

= 1z Greater (z, x)
_/

truth value:

doesn’t depend on y or Z “bound variables”
does depend on X “free variable”

qguantifiers only act on free variables of the formula

they quantify X W wt free
V x (3 y (P(x,y) =V x Q(y, x)))
—)

Quantifier “Style” /

V
Vx(3y (P(x,y) = V x Q(y, x)))

This isn’t “wrong”, it’s just horrible style.
Don’t confuse your reader by using the same
variable multiple times...there are a lot of letters...

Nested Quantifiers

e Bound variable names don’t matter

Vx Ay P(x, y) = Va db P(a, b)
T 7

* Positions of quantifiers can sometimes change

Vx (Q(x) A Jy P(x, y)) = Vx Jy (Q(x) A P(x, y))
T)

 But: orderis important...

Quantifier Order Can Matter

Domain of Discourse Predicate Definitions
Integers Greaterkq(x, y) ::= “x2y”
OR
\ {11 2/ 3; 4} Y,

“There is a number greater than or equal to all numbers.”

2
X Vy GreaterEq(x, y))) X3l 117

“Every number has a number greater than or equal to it.” [—4

W

Vy dx GreaterEq(x, y))) ~—

The purple statement requires an entire row to be true.
The red statement requires one entry in each column to be true

Quantification with Two Variables @%— \

expression

when true

when false

Vx YV yP(x,y)

—_—

Every pair is true.

N

At least one pair is false.

dx3yP(x,y)

At least one pair is true.

All pairs are false.

V x3yP(x,y)

We can find a specific y for
each x.

(X1, Y1), (X5, ¥3), (X3, ¥3)

Some x doesn’t have a
corresponding y.

Con of fy

dy V x P(x, y)

We can find ONE y that
works no matter what x is.

(X1, ¥), (X5, ¥), (X3, ¥)

For any candidate vy, there is
an x that it doesn’t work for.

Logical Inference

e So far we’ve considered:

— How to understand and express things using
propositional and predicate logic

— How to compute using Boolean (propositional) logic

— How to show that different ways of expressing or
computing them are equivalent to each other

* Logic also has methods that let us infer implied
properties from ones that we know

— Equivalence is a small part of this

W<\<S A Q<\0> /’5 P(&\

\

Applications of Logical Inference

Software Engineering

— Express desired properties of program as set of logical
constraints

— Use inference rules to show that program implies that
those constraints are satisfied

* Artificial Intelligence

— Automated reasoning

Algorithm design and analysis

— e.g8., Correctness, Loop invariants.

Logic Programming, e.g. Prolog

— EXxpress desired outcome as set of constraints

— Automatically apply logic inference to derive solution

Proofs

e Start with hypotheses and facts
* Use rules of inference to extend set of facts
* Result is proved when it is included in the set

An inference rule: Modus Ponens

 |f pand p — q are both true then g must be true

Write this rule as P,P—>Q

- g
* Given:
— If it is Monday then you have a 311 class today.
— It is Monday.

Therefore, by Modus Ponens:
— You have a 311 class today.

My First Proof!

Show that r follows from p,p > q,and g —> r

P Given
p—>q Given
qg—>r Given

akro0ObPRE

My First Proof!

Show that r follows from p,p > q,and g —> r

P Given
p—>q Given
qg—>r Given
q MP: 1,2
r MP: 3, 4

akro0ObPRE

Proofs can use equivalences too

Show that —p follows from p — q and —q

hONR

P—>(q
—q

—P

Given

Given
Contrapositive: 1
MP: 2, 3

Inference Rules

e Each inference rule is written as:
...which means that if both A and B
are true then you can infer C and

you can infer D.
— For rule to be correct (A AB) —> C and
(A A B) > D must be a tautologies

A, B
+» C,D

* Sometimes rules don’t need anything to start with.
These rules are called axioms:

— e.g. Excluded Middle Axiom

Simple Propositional Inference Rules

Excluded middle plus two inference rules per binary
connective, one to eliminate it and one to introduce it

pAg P, g
S P, Qg S PACQ
pvg,—p P

.‘.q -‘-qu,q\/p

Direct Proof Rule
Not like other rules

Proofs

Show that r follows fromp,p > qand (pAq) —>r

How To Start:
We have givens, find the ones that go P.P—4¢
together and use them. Now, treat new -+ g
things as givens, and repeat.
PACQ
. p; q
P, g

“PAQ

Proofs

Show that r follows fromp,p - g, andp Aq —> r

1. p Given
Two visuals of the same proof. 2. p—q Given
We will use the top one, butif 3. ¢ MP: 1, 2
the bottom one helps you 4. pAg Intro Az 1. 3
think about it, that’s great! ' _ -
5. pAg—1 Given
6. r MP: 4,5
— 7
P P>4quo
4 Intro /\/\
N - 7r
PAg pAGDT o

r

Important: Applications of Inference Rules

* You can use equivalences to make substitutions
of any sub-formula.

* Inference rules only can be applied to whole
formulas (nhot correct otherwise).

eg 1. p—oq given
2. (pVvr)=>g——-ntrovirom 1.

Does not follow! e.g . p=F, q=F, r=T

