CSE 311: Foundations of Computing

Lecture 5: DNF, CNF and Predicate Logic

——— ——..-']'ll'_ l

‘:‘) - LA
JZv . ﬁ 1 ”
oFEN . =3[drax
i) 6096‘ -
N 4588 [on
Ifky

u%: = [g PULTHE WRE RO TGHT, o
e {7
5 = Sov = P o | (M) 20V

==

E'S
- 3 WARM
2507, ELECTRIC HOEE 2
o T pm' . Gl MoRAL @ MAGIC
)) RECTFER (@5
ARTUING, 25T
R
CRED,
Mest fg
ExPENN| NECK,
CHIP b SRAP L o H 1.0’:_-‘ <
AMABLE. o—rt mﬁ:‘ﬁaﬁ H-‘C—'H L r
HIRE Sorewe. -V H
ELECTREMS
SINGLE ode s sw% (&30 b4
fiLe REAL FAST. oM, 07y
) 55 L ﬁRBJH i
i L ks VEATR

o

[—
[
D ETREIN Mﬁ oEER ‘
PEU

MY USE AN NOT A RESSTOR;
TEHEN) SR Ome

TAKE OFF SHIRT
TEAR 3 L E Wk || o
COLLECTHR, 1 PRRT. (OH, YEH,
T UKE THAT. HOLY
WETER,

1-bit Binary Adder

A - 0+ 0=0 (with Cyy;; =0)
+B 0+1=1(withCo,=0)| ' *(+ = [l
S - 1+0=1(withC,,;;=0) 8
(Cour) -1+1=0(withCy;;=1) ot
o \:ng\j‘
Idea: These are chained together, with a carry-in
C) COUT CIN COUTCIN
¢le; ?\ pfw aVaVaVaVa i1 0 o0
AllAlA|[A| A of1/1]1
(O™} +B AEEREE of1/1|o0
f5D00 S slsis|is|s 1f1{0f1
(Cour) /(\
1

1-bit Binary Adder

* Inputs: A, B, Carry-in Cour Cin

* Qutputs: Sum, Carry-out Alallallalla

£
~

A B CIN COUT S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

1-bit Binary Adder

. : r Cour C
Inputs: A, B, Carry-in [\[\%U{AN[\ o5
* Qutputs: Sum, Carry-out allallallalla L5
BlB|B|B|B o
J s(slslls|s ° e
0 5
A B | S |G ﬂ Derive an expression for S g N
0 0 0 0 5 2
o | 1 | 1 [1 Jo| S=A B +Cp+A BeCy +
1 2 i’ ‘i - A*B'+C, +A°B*C,y
1 1 0 1 H —
A*B*Cy

1-bit Binary Adder

° . -1 Cour Civ
Inputs: A, B, Carry-in ANLAN
e Outputs: Sum, Carry-out Allallallalla
B|B||B|B|B
sifsiis|fs]s

Derive an expression for Cg;

A'*B-Cy
Cour=A*BeCy+A*B *Cy+

A.B’.CIN A.B.ClN +A.B.C|N

A*BeCy
A*B-Cyy

S=A’.B’.CIN+A’.B.CIN’+A.B’.CIN’+A.B.CIN

1-bit Binary Adder

* |nputs: A, B, Carry-in [\[\Cv‘}“{/c{‘[\

* Qutputs: Sum, Carry-out Alallallalla
BlB|/BIB|B
siislisllsl|ls

A B CIN COUT S
0 0 0 0 0
0 0 1 0 1
2 1 ‘;’ ‘i cl) S=A"*B'*Cyp+A *B*Cy +A*B *Cy +A*B*Cyp
1 0 0 0 1 COUT=A’.B.CIN+A.B’.CIN+A.B.C|N’+A.B.CIN
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions
— e.g., full adder’s carry-out function

Cout A’B Cin + A B’ Cin + AB Cin’ + AB Cin

A'BCin + AB'Cin + ABCin’ + |ABCin + ABCin
A'BCin + ABCin“+ AB'Cin + ABCin’ + ABCin
(A + A)BCin + AB' Cin + ABCin” + ABCin
(1)BCin + AB'Cin + ABCin" + ABCin

BCin + AB'Cin + ABCin” +/ABCin + ABCin
BCn + AB'Cin + ABCin“+ ABCin’ + ABCin
BCin + A(B'+B)Cin + ABCin" + ABCin
BCin + A(I)Cin + ABCin’ + ABCin

BCin + ACin + AB(Cin’+ Cin)

B Ci B (1) _
BCin + ACin + A adding extra terms
creates new factoring

opportunities

A 2-bit Ripple-Carry Adder
R P RN

Cin Cout _’Cin COUt _’Cin Cout
i 2

o Sum, Sum, Sum,
—_— —_—
\ Uses the fact that

—
Sum Sum = A’eB’sC,y + A’sBsC,y/ + A*B’sC,y/ + AsBsCpy

is equivalent to Sum = (A @ B) @ C,

Mapping Truth Tables to Logic Gates

Given a truth table: A B C|F
1. Write the Boolean expression 8 8 (1) 8
2. Minimize the Boolean expression 0 1 ol1
3. Draw as gates 0o 1 111
4. Map to available gates —~ 1 0 010
1 0 1] 1
— 1 1 0|0
F =ABC+ABC+AB’C+ABC 1 1 111
@l = AB(C’+C)+AC(B’'+B)
= AB+AC ~
NotAID—+ 0 @ notAD+}
BD__,_ " N Bl ;
A A p—
Cm} Co

Canonical Forms

* Truth table is the unique signature of a Boolean
Function

 The same truth table can have many gate realizations
— We've seen this already
— Depends on how good we are at Boolean simplification

e Canonical forms
— Standard forms for a Boolean expression
— We all come up with the same expression

Sum-of-Products Canonical Form

 AKA Disjunctive Normal Form (DNF)
* AKA Minterm Expansion ©

Add the minterms together

F= A'B'C + ABC + AB'C + ABC' + ABC’

A B c F Read Tcr?ws off Cogzrt to

0 0 0 0 truth table Boolean Algebra

0o | o 1 @—b@—»

0 1 0 0

0 1 1 1D 0) ’

1 0 0 0 F
T [o | 1 |2 101 m——p ABC™
HENENE 110 =——p ABC’
HERENE 111 m—p ABC

Sum-of-Products Canonical Form

Product term (or minterm)
— ANDed product of literals - input combination for which output is true
— each variable appears exactly once, true or inverted (but not both)

A B C | minterms _ _
0 0 o |ABC F in canonical form:
0 0 1 |ABC F(A,B,C) = ABC+ ABC + AB'C + ABC' + ABC
0 1 0 |ABC _ a -
0 1 1 | ABC canonical form = minimal form
1 0 0 |ABC F(A, B,C) = AB'C+ ABC + AB'C + ABC + ABC'
1 0 1 |ABC = (AB’+ AB + AB’ + AB)C + ABC'
1 1 0 |ABC = ((A' + A)(B' + B))C + ABC'
1 1 1 |ABC =C+ ’ABC

= ABC' + C

=AB + C
Ea———y

Product-of-Sums Canonical Form

 AKA Conjunctive Normal Form (CNF)
« AKA Maxterm Expansion @

Multiply the maxterms together

F =

A B C F Read F rows off Negate all cOnC;j’zrt to

truth table bits Boolean Algebra
o o T —
0 0 1 1
0 | 2] O] 0 rmp) ;| w2/,
0 1 1 1
1 0 1 1 0} ((
1 1 0 1 O)
1 1 1 1 \(é 4 ‘

/

Product-of-Sums Canonical Form

 AKA Conjunctive Normal Form (CNF) -
« AKA Maxterm Expansion @

Multiply the maxterms together
F=(A+B+C)(A+B +C)(A"+B+0()

© @ ®
Read F rows off Negate all Convert to

A | B C F truth table bits Boolean Algebra

0 0 0 0 " ey () =]]] A + B + C

0 0 1 1 o
pre [@ [(01— 010 —> 101—> A+B +C £ F

,) 0 1 1 1

N BC 1 0 0 0 ey 10 =)]] A’ + B + C

1 0 1 1

1 1 0 1

1 1 1 1

Product-of-Sums: Why does this procedure work?

Useful Facts:
* We know (F’) =F
* We know how to get a minterm expansion for F’

F'=AB'C + ABC' + AB'CC

R|lRr|(Rr|R,r|lOoO|lo|lo|o] P

R |O|l—R|O|lR|[O|lR|O] O

Rrl—r|lO|O|rR|R|OC|O] @
R lRr|R,R|O|lR|[O|FR,]|O] =M

]
d
!
O
y
9
©
O

Product-of-Sums: Why does this procedure work?

Useful Facts:
* We know (F’) =F
* We know how to get a minterm expansion for F’

F'= AB'C' + ABC + AB'C’
Taking the complement of both sides...

(F) = (AB'C' + ABC’ + AB'C")’
Kl And using DeMorgan/Comp....

F — (A’BICI),, (AIBCI)I ‘ (ABICI)I

R|lRr|(Rr|R,r|lOoO|lo|lo|o] P

R |O|l—R|O|lR|[O|lR|O] O

Rrl—r|lO|O|rR|R|OC|O] @
R lRr|R,R|O|lR|[O|FR,]|O] =M

F=(A+B+C(A+B +C)(A'+B+C(C)

—————— ae————— = e

Product-of-Sums Canonical Form

Sum term (or maxterm)
— ORed sum of literals - input combination for which output is false
— each variable appears exactly once, true or inverted (but not both)

A B C | maxterms F in canonical form:

0O 0O 0 |A+B+C F(A,B,CO) =(A+B+C)(A+B"+CO)(A+B+0C)
0O 0 1 |A+B+C

0O 1 0 |A+B+C canonical form = minimal form

0 1 1 |A+B+C F(A,B,C) =(A+B+C)(A+B +C)(A+B+C)
1 0 0 |A+B+C =(A+B+C)(A+B +0C)

1 0 1 |A+B+C (A+B+C)(A+B+C)

1 1 0 |A+B+C =(A+C)(B+ 0O

1 1 1 |A+B+C — —_—

Predicate Logic

* Propositional Logic

“If you take the high road and | take the low road then I'll
arrive in Scotland before you.”

* Predicate Logic
“All positive integers x, y, and z satisfy x3 + y3 # z3.”

Predicate Logic

* Propositional Logic

— Allows us to analyze complex propositions in
terms of their simpler constituent parts (a.k.a.
atomic propositions) joined by connectives

* Predicate Logic

— Lets us analyze them at a deeper level by
expressing how those propositions depend on
the objects they are talking about

Predicate Logic

Adds two key notions to propositional logic
— Predicates

— Quantifiers

1@ |

QUANTIFIEM

Predicates

Predicate
— A function that returns a truth value, e.g.,

Cat(x) ::= “xis a cat”

Prime(x) ::= “x is prime”

HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x<y”

Sum(x,y, z) i=“x+y=2"

GreaterThan5(x) ::= “x > 5"

HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments
and input types.

Domain of Discourse

For ease of use, we define one “type”/“domain” that we
work over. This set of objects is called the “domain of
discourse”.

For each of the following, what might the domain be?

(1) “x is a cat”, “x barks”, “x ruined my couch”
f/ofﬁ YW e L7

(
(2) “x is prime”, “x =07, “x< 07, “x is a power of two”
V\u\wlqtf&l V\’\(Sga(r
(3) “student x has taken course y” “x is a pre-req for z”

s tndldbe o

Domain of Discourse

For ease of use, we define one “type”/“domain” that we
work over. This set of objects is called the “domain of
discourse”.

For each of the following, what might the domain be?

(1) “x is a cat”, “x barks”, “x ruined my couch”
“mammals” or “sentient beings” or “cats and dogs” or ...

(2) “x is prime”, “x =07, “x< 07, “x is a power of two”
“numbers” or “integers” or “integers greater than 5” or ...

(3) “student x has taken course y” “x is a pre-req for z”

“students and courses” or “university entities” or ...

Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) I @)

‘; u u u
P(x) is true for every x in the domain QUANTIFIEE
read as “for all x, P of x”

3x P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”): Vx P(x)
P(x) is true for every x in the domain

read as “for all x, P of x”

Exam ples: Are these true?

e Vx0dd(x)

VX LessThand(x)

Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”): Vx P(x)

P(x) is true for every x in the domain
read as “for all x, P of x”

Examp|es: Are these true? It depends on the domain. For example:

£1, 3,-1,-27} Integers Odd Integers

True False @
. Vx LessThan4(x) True False

e Vx0dd(x)

Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”): dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Examples: Arethese true?

e dx 0dd(x)

* dx LessThan5(x)

Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”): dx P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Examp|es: Are these true? It depends on the domain. For example:

Positive
Multiples of 5

(True™ @ True
. 3xLessThand(x) | (True, rue CFalse

{1, 3,-1,-27} Integers

e dx 0dd(x)

Statements with Quantifiers

Just like with propositional logic, we need to define variables (this
time predicates) before we do anything else. We must also now
define a domain of discourse before doing anything else.

Predicate Definitions

Domain of Discourse g Even(x) ::= “x is even” Greater(x, y) ::= “x > y”
Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”

\\Prime(x) 1= “xis prime” Sum(x, y, z) ::i= “x+y=2")

Statements with Quantifiers

Predicate Definitions

Domain of Discourse
| Positive Integers

Even(x) ::= “xis even” Greater(x, y) ::= “x>vy”
Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x+y=2"

Determine the truth values of each of these statements:

dx Even(x)

Vx Odd(x)

Vx (Even(x) v Odd(x))
dx (Even(x) A Odd(x))
Vx Greater(x+1, x)

dx (Even(x) A Prime(x))

/)

(

F
T
F

-1 A

Statements with Quantifiers

Domain of Discourse
| Positive Integers

Predicate Definitions

Even(x) ::= “x is even” Greater(x, y) ::= “x>vy”
Odd(x) ::= “x is odd” Equal(x, y) ::= “x=y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y=2")

Determine the truth values of each of these statements:

dx Even(x)
Vx Odd(x)
Vx (Even(x) v Odd(x))
dx (Even(x) A Odd(x))

Vx Greater(x+1, x)

T eg.24,6,..

F eg24,6,..

T every integer is either even or odd
F nointeger is both even and odd

T adding 1 makes a bigger number

Ix (Even(x) A Prime(x)) T Even(2) is true and Prime(2) is true

Statements with Quantifiers

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “xis prime” Sum(x, y, z) ::= “x +y =2"

Translate the following statements to English

Vx 3y Greater(y, x)

Vx dy Greater(x, y)

Vx 3y (Greater(y, x) A Prime(y))

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

dx 3y (Sum(x, 2, y) A Prime(x) A Prime(y))

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) 1= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y=2")

Translate the following statements to English

Vx dy Greater(y, x)
For every positive integer X, there is a positive integer y, such thaty > x.
Vx dy Greater(x, y)
For every positive integer X, there is a positive integer y, such that x > y.
Vx 3y (Greater(y, x) A Prime(y))
For every positive integer X, there is a pos. int. y such thaty > x and y is prime.
Vx (Prime(x) — (Equal(x, 2) v Odd(x)))
For each positive integer x, if x is prime, then x = 2 or x is odd.
dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist positive integers x and y such that x + 2 =y and x and y are prime.

Statements with Quantifiers (Natural Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) 1= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y=2")

Translate the following statements to English

Vx dy Greater(y, x)

There is no greatest positive integer.
Vx dy Greater(x, y)

There is no least positive integer.
Vx 3y (Greater(y, x) A Prime(y))

For every positive integer there is a larger number that is prime.

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.

dx 3y (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist prime numbers that differ by two.”

English to Predicate Logic

Predicate Definitions

Domain of Discourse Cat(x) ::= “x is a cat”
Mammals | Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”

“Red cats like tofu”

“Some red cats don’t like tofu”

English to Predicate Logic

Predicate Definitions

Domain of Discourse Cat(x) ::= “x is a cat”
Mammals | Red(x) ::= “x is red”

\LikesTofu(x) ::= “x likes tofu”)

“Red cats like tofu”

VX ((Red(x) A Cat(x)) — LikesTofu(x))

“Some red cats don’t like tofu”

dy ((Red(y) A Cat(y)) A —LikesTofu(y))

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “x is a cat”

Mammals Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”)

—

When putting two predicates together like this, we
‘ use an “and”.

When restricting to a smaller

“Red cats like tofu” < domain in a “for all” we use

implication.
When there’s no leading
quantification, it means “for all”.
—d When restricting to a smaller
“Some red cats don’t like tofu” €— domain in an “exists” we use
and.

“Some” means “there exists”.

Negations of Quantifiers

Predicate Definitions
. PUFp|€FFUIt(X) bo= ”X |S a purple fruitn]

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one “feels” right?

Key Idea: In every domain, exactly one of a
statement and its negation should be true.

Negations of Quantifiers

Predicate Definitions
. PUI’p|eFI'UIt(X) bo= ”X |S a purple fruit”]

(*) Vx PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key ldea: In every domain, exactly one of a
statement and its negation should be true.

Domain of Discourse Domain of Discourse Domain of Discourse
{plum} | | {apple} J | {plum, apple}

The only choice that ensures exactly one of the statement and its negation is (b).

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— Ix P(x) = Vx — P(x)

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— Ix P(x) = Vx — P(x)

“There is no largest integer”

—dxVy (x2y)
= Vx=aVy (x2y)
Vx dy—=(x2y)
= Vx dy (x<y)

“For every integer there is a larger integer”

Scope of Quantifiers

Ix (P(x) AQ(x)) vs. dxP(x) A dx Q(x)

Scope of Quantifiers

Ix (P(x) AQ(x)) vs. dxP(x) A dx Q(x)

This one asserts P This one asserts P and Q
and Q of the same x. of potentially different x’s.

Scope of Quantifiers

Example: Notlargest(x) = 3y Greater (y, x)
= 1z Greater (z, x)

truth value:

doesn’t depend on y or Z “bound variables”
does depend on X “free variable”

qguantifiers only act on free variables of the formula
they quantify

Vx(3y (Plxy) = V¥ xQfy, x)))

Quantifier “Style”

Vx(3y (P(x,y) = V x Q(y, x)))

This isn’t “wrong”, it’s just horrible style.
Don’t confuse your reader by using the same
variable multiple times...there are a lot of letters...

