
CSE 311: Foundations of Computing

Lecture 5: DNF, CNF and Predicate Logic



1-bit Binary Adder
A

+ B
S

(COUT)

0 + 0 = 0 (with COUT = 0)
0 + 1 = 1 (with COUT = 0)
1 + 0 = 1 (with COUT = 0)
1 + 1 = 0 (with COUT = 1)

Idea: These are chained together, with a carry-in

A A A A A
B B B B B

S S S S S

CINCOUT(CIN)

A
+ B

S
(COUT)

0 1 1 1 0
0 1 1 0 1

1 1 0 1 1

CINCOUT
1 1 0 0



1-bit Binary Adder

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out

A
B

CIN
COUT

S

A A A A A
B B B B B

S S S S S

CINCOUT

A B CIN COUT S
0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1



1-bit Binary Adder

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out A A A A A
B B B B B

S S S S S

CINCOUT

A B CIN COUT S
0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

A’•B’•CIN

A’•B•CIN’

A•B’•CIN’

A•B•CIN

S = A’•B’•CIN + A’•B•CIN’ +     

A•B’•CIN’ + A•B•CIN

Derive an expression for S



1-bit Binary Adder

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out A A A A A
B B B B B

S S S S S

CINCOUT

A•B’•CIN

A•B•CIN’

A’•B•CIN

A•B•CIN

A B CIN COUT S
0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

S = A’•B’•CIN + A’•B•CIN’ + A•B’•CIN’ + A•B•CIN

COUT = A’•B•CIN + A•B’•CIN +

A•B•CIN’ + A•B•CIN

Derive an expression for COUT



1-bit Binary Adder

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out A A A A A
B B B B B

S S S S S

CINCOUT

COUT = A’•B•CIN + A•B’•CIN + A•B•CIN’ + A•B•CIN

A B CIN COUT S
0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

S = A’•B’•CIN + A’•B•CIN’ + A•B’•CIN’ + A•B•CIN



Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

– e.g., full adder’s carry-out function 

Cout =  A’ B Cin + A B’ Cin + A B Cin’ + A B Cin
=  A’ B Cin +  A B’ Cin +  A B Cin’  +  A B Cin +  A B Cin
=  A’ B Cin +  A B Cin +  A B’ Cin +  A B Cin’  +  A B Cin
=  (A’ + A) B Cin +  A B’ Cin +  A B Cin’  +  A B Cin
=  (1) B Cin +  A B’ Cin +  A B Cin’  +  A B Cin
=  B Cin +  A B’ Cin + A B Cin’  +  A B Cin +  A B Cin
=  B Cin +  A B’ Cin +  A B Cin +  A B Cin’  +  A B Cin
=  B Cin +  A (B’ + B) Cin +  A B Cin’  +  A B Cin
=  B Cin +  A (1) Cin +  A B Cin’  +  A B Cin
=  B Cin +  A Cin +  A B (Cin’ +  Cin)
=  B Cin +  A Cin +  A B (1)
=  B Cin +  A Cin +  A B adding extra terms 

creates new factoring 
opportunities



A 2-bit Ripple-Carry Adder

A

Sum

CoutCin

B

1-Bit Adder

A
B

Cin
Sum

A
B

A
Cin

B
Cin

Cout

A0 B0

CoutCin

Sum0

0

A1 B1

Sum1

CoutCin

A2 B2

Sum2

CoutCin

Uses the fact that                                                         
Sum = A’•B’•CIN + A’•B•CIN’ + A•B’•CIN’ + A•B•CIN

is equivalent to Sum = (A B) CIN



Mapping Truth Tables to Logic Gates

Given a truth table:

1. Write the Boolean expression

2. Minimize the Boolean expression

3. Draw as gates

4. Map to available gates

A B C    F
0 0 0    0
0 0 1    0
0 1 0    1
0 1 1    1
1 0 0    0
1 0 1    1
1 1 0    0
1 1 1    1F = A’BC’+A’BC+AB’C+ABC

= A’B(C’+C)+AC(B’+B)
= A’B+AC

notA
B

A
C

F F

notA
B

A
C

1

2

3

4



Canonical Forms

• Truth table is the unique signature of a Boolean 
Function

• The same truth table can have many gate realizations
– We’ve seen this already
– Depends on how good we are at Boolean simplification

• Canonical forms
– Standard forms for a Boolean expression
– We all come up with the same expression



Sum-of-Products Canonical Form

• AKA Disjunctive Normal Form (DNF)

• AKA Minterm Expansion

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

001

011

101
110
111

A’B’C

A’BC

AB’C
ABC’
ABC

F

F= A’B’C + A’BC + AB’C + ABC’ + ABC’

Read T rows off
truth table

Convert to
Boolean Algebra

Add the minterms together

1 2

3



Sum-of-Products Canonical Form

Product term (or minterm)

– ANDed product of literals – input combination for which output is true

– each variable appears exactly once, true or inverted (but not both)

A B C minterms
0 0 0 A’B’C’
0 0 1 A’B’C
0 1 0 A’BC’
0 1 1 A’BC

1 0 0 AB’C’
1 0 1 AB’C
1 1 0 ABC’
1 1 1 ABC

F in canonical form:
F(A, B, C) = A’B’C + A’BC + AB’C + ABC’ + ABC

canonical form  minimal form
F(A, B, C) = A’B’C + A’BC + AB’C + ABC + ABC’ 

= (A’B’ + A’B + AB’ + AB)C + ABC’
= ((A’ + A)(B’ + B))C + ABC’
= C + ABC’
= ABC’ + C
= AB + C



Product-of-Sums Canonical Form

• AKA Conjunctive Normal Form (CNF)

• AKA Maxterm Expansion

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

F

F =  

Read F rows off
truth table

Negate all
bits

Multiply the maxterms together

1 2

4

Convert to
Boolean Algebra

3



Product-of-Sums Canonical Form

• AKA Conjunctive Normal Form (CNF)

• AKA Maxterm Expansion

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

000

010

100

F

F = (A + B + C)(A + B’ + C)(A’ + B + C)

111

101

011

A + B + C

A + B’ + C

A’ + B + C

Read F rows off
truth table

Negate all
bits

Multiply the maxterms together

1 2

4

Convert to
Boolean Algebra

3



Product-of-Sums: Why does this procedure work?

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Useful Facts:

• We know (F’)’ = F

• We know how to get a minterm expansion for F’

F’ = A’B’C’ + A’BC’ + AB’C’



Product-of-Sums: Why does this procedure work?

A B C F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Useful Facts:

• We know (F’)’ = F

• We know how to get a minterm expansion for F’

F’ = A’B’C’ + A’BC’ + AB’C’
Taking the complement of both sides…

(F’)’ = (A’B’C’ + A’BC’ + AB’C’)’
And using DeMorgan/Comp.…

F = (A’B’C’)’  (A’BC’)’  (AB’C’)’

F = (A + B + C)(A + B’ + C)(A’ + B + C)



Product-of-Sums Canonical Form

Sum term (or maxterm)

– ORed sum of literals – input combination for which output is false

– each variable appears exactly once, true or inverted (but not both)

A B C maxterms
0 0 0 A+B+C
0 0 1 A+B+C’
0 1 0 A+B’+C
0 1 1 A+B’+C’
1 0 0 A’+B+C
1 0 1 A’+B+C’
1 1 0 A’+B’+C
1 1 1 A’+B’+C’

F in canonical form:
F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

canonical form  minimal form
F(A, B, C) = (A + B + C) (A + B’ + C) (A’ + B + C)

= (A + B + C) (A + B’ + C)
(A + B + C) (A’ + B + C)

= (A + C) (B + C)



• Propositional Logic
“If you take the high road and I take the low road then I’ll 
arrive in Scotland before you.”

• Predicate Logic 
“All positive integers , , and satisfy .”

Predicate Logic



Predicate Logic

• Propositional Logic
– Allows us to analyze complex propositions in 

terms of their simpler constituent parts (a.k.a. 
atomic propositions) joined by connectives

• Predicate Logic 
– Lets us analyze them at a deeper level by 

expressing how those propositions depend on 
the objects they are talking about



Predicate Logic

Adds two key notions to propositional logic
– Predicates

– Quantifiers



Predicate
– A function that returns a truth value, e.g.,

Cat(x) ::= “x is a cat”
Prime(x) ::= “x is prime”
HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x < y”
Sum(x, y, z) ::= “x + y = z”
GreaterThan5(x) ::= “x > 5”
HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments 
and input types.   

Predicates



Domain of Discourse

For ease of use, we define one “type”/“domain” that we 
work over.  This set of objects is called the “domain of 
discourse”.

For each of the following, what might the domain be?

(1) “x is a cat”, “x barks”, “x ruined my couch”

(2) “x is prime”, “x = 0”, “x < 0”, “x is a power of two”

(3) “student x has taken course y”  “x is a pre-req for z”



Domain of Discourse

For ease of use, we define one “type”/“domain” that we 
work over.  This set of objects is called the “domain of 
discourse”.

For each of the following, what might the domain be?

(1) “x is a cat”, “x barks”, “x ruined my couch”

(2) “x is prime”, “x = 0”, “x < 0”, “x is a power of two”

(3) “student x has taken course y”  “x is a pre-req for z”

“mammals” or “sentient beings” or “cats and dogs” or …

“numbers” or “integers” or “integers greater than 5” or …

“students and courses” or “university entities” or …



Quantifiers

We use quantifiers to talk about collections of objects.

x P(x)
P(x) is true for every x in the domain

read as “for all x, P of x”

x P(x) 
There is an x in the domain for which P(x) is true

read as “there exists x, P of x”



Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”):     x P(x)
P(x) is true for every x in the domain

read as “for all x, P of x”

Examples:

• x Odd(x)

• x LessThan5(x)

Are these true? 



Quantifiers

We use quantifiers to talk about collections of objects.

Universal Quantifier (“for all”):     x P(x)
P(x) is true for every x in the domain

read as “for all x, P of x”

Examples:

• x Odd(x)

• x LessThan4(x)

Are these true?  It depends on the domain. For example:

{1, 3, -1, -27} Integers Odd Integers

True False True

True False False



Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”):     x P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Examples:

• x Odd(x)

• x LessThan5(x)



Quantifiers

We use quantifiers to talk about collections of objects.

Existential Quantifier (“exists”):     x P(x)
There is an x in the domain for which P(x) is true
read as “there exists x, P of x”

Examples:

• x Odd(x)

• x LessThan4(x)

Are these true?  It depends on the domain. For example:

{1, 3, -1, -27} Integers
Positive 

Multiples of 5

True True True

True True False



Statements with Quantifiers
Just like with propositional logic, we need to define variables (this 
time predicates) before we do anything else.  We must also now 
define a domain of discourse before doing anything else.

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse



Statements with Quantifiers

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

x Even(x)

x Odd(x)

x (Even(x)  Odd(x))

x (Even(x)  Odd(x))

x Greater(x+1, x)

x (Even(x)  Prime(x))

Determine the truth values of each of these statements:



Statements with Quantifiers

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

x Even(x)

x Odd(x)

x (Even(x)  Odd(x))

x (Even(x)  Odd(x))

x Greater(x+1, x)

x (Even(x)  Prime(x))

Determine the truth values of each of these statements:

T e.g. 2, 4, 6, ...

F e.g. 2, 4, 6, ...

T      every integer is either even or odd

F      no integer is both even and odd

T      adding 1 makes a bigger number

T      Even(2) is true and Prime(2) is true



Statements with Quantifiers

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

x y Greater(y, x)

x y Greater(x, y)

x y (Greater(y, x)  Prime(y))

x (Prime(x)  (Equal(x, 2)  Odd(x)))

x y (Sum(x, 2, y)  Prime(x)  Prime(y)) 

Translate the following statements to English



Statements with Quantifiers (Literal Translations)

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

x y Greater(y, x)

x y Greater(x, y)

x y (Greater(y, x)  Prime(y))

x (Prime(x)  (Equal(x, 2)  Odd(x)))

x y (Sum(x, 2, y)  Prime(x)  Prime(y)) 

Translate the following statements to English

For every positive integer x, there is a positive integer y, such that y > x.

For every positive integer x, there is a positive integer y, such that x > y.

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

For each positive integer x, if x is prime, then x = 2 or x is odd.

There exist positive integers x and y such that x + 2 = y and x and y are prime.



Statements with Quantifiers (Natural Translations)

Even(x) ::= “x is even”
Odd(x) ::= “x is odd”
Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”
Equal(x, y) ::= “x = y”
Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers
Domain of Discourse

x y Greater(y, x)

x y Greater(x, y)

x y (Greater(y, x)  Prime(y))

x (Prime(x)  (Equal(x, 2)  Odd(x)))

x y (Sum(x, 2, y)  Prime(x)  Prime(y)) 

Translate the following statements to English

There is no greatest positive integer.

There is no least positive integer.

For every positive integer there is a larger number that is prime.

Every prime number is either 2 or odd.

There exist prime numbers that differ by two.”



English to Predicate Logic

“Red cats like tofu” 

“Some red cats don’t like tofu” 

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse



English to Predicate Logic

“Red cats like tofu” 

“Some red cats don’t like tofu” 

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

x ((Red(x)  Cat(x))  LikesTofu(x))

y ((Red(y)  Cat(y))  LikesTofu(y))



“Red cats like tofu” 

“Some red cats don’t like tofu” 

English to Predicate Logic

Cat(x) ::= “x is a cat”
Red(x) ::= “x is red”
LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals
Domain of Discourse

When there’s no leading 
quantification, it means “for all”.

“Some” means “there exists”.

When putting two predicates together like this, we 
use an “and”.

When restricting to a smaller 
domain in a “for all” we use 
implication.

When restricting to a smaller 
domain in an “exists” we use 
and.



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition!  Which one “feels” right?

Key Idea: In every domain, exactly one of a 
statement and its negation should be true.



Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”
Predicate Definitions

(*) x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?
(a) “there exists a purple fruit”
(b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Key Idea: In every domain, exactly one of a 
statement and its negation should be true.

{plum}
Domain of Discourse

{apple}
Domain of Discourse

{plum, apple}
Domain of Discourse

The only choice that ensures exactly one of the statement and its negation is (b).



De Morgan’s Laws for Quantifiers

x P(x)  x  P(x)
 x P(x)  x  P(x)



De Morgan’s Laws for Quantifiers

  x  y  ( x ≥ y)
  x  y  ( x ≥ y)
  x   y  ( x ≥ y)
  x   y  (x < y)

“There is no largest integer”

“For every integer there is a larger integer”

x P(x)  x  P(x)
 x P(x)  x  P(x)



Scope of Quantifiers

x  (P(x)  Q(x)) vs. x P(x)  x Q(x)



Scope of Quantifiers

x  (P(x)  Q(x)) vs. x P(x)  x Q(x)

This one asserts P 
and Q of the same x.

This one asserts P and Q 
of potentially different x’s.



Scope of Quantifiers

Example: NotLargest(x)    y Greater (y, x)                            
  z Greater (z, x)

truth value:

doesn’t depend on y or z “bound variables”

does depend on x “free variable”

quantifiers only act on free variables of the formula 
they quantify

 x ( y (P(x,y)  x Q(y, x)))



Quantifier “Style”

x(y (P(x,y)  x Q(y, x)))

This isn’t “wrong”, it’s just horrible style.
Don’t confuse your reader by using the same 
variable multiple times…there are a lot of letters…


