
CSE 311: Foundations of Computing
Lecture 3: Digital Circuits & Equivalence

Homework #1

• You should have received
– An e-mail from [cse311a/cse311b] with

information pointing you to look at Canvas to
submit HW

– An e-mail from UW Canvas with a notification
about the homework assignment. Click on
“Assignments” to see all the questions

If you haven’t received one, send e-mail to
cse311-staff@cs.washington.edu

Last class: Logical Equivalence A  B

A  B is an assertion that two propositions A and B
always have the same truth values.

A  B and (A  B)  T have the same meaning.

p  q  q  p

p  q q  p
When p=T and q=F, p q is false, but q p is true

p q p  q q  p (p  q)(q  p)
T T T T T

T F F F T

F T F F T

F F F F T

tautology

Last class: De Morgan’s Laws




De Morgan’s Laws

Last class: Equivalences Related to Implication

Law of Implication

Contrapositive

Biconditional

  

Last class: Properties of Logical Connectives

One more easy equivalence

p  p   p p  p

T F T T

F T F T

Double Negation

 

Last class: Digital Circuits

Computing With Logic
– T corresponds to 1 or “high” voltage
– F corresponds to 0 or “low” voltage

Gates
– Take inputs and produce outputs (functions)
– Several kinds of gates
– Correspond to propositional connectives (most

of them)

Last class: AND, OR, NOT Gates

p q p  q

T T T

T F F

F T F

F F F

p q OUT

1 1 1

1 0 0

0 1 0

0 0 0

AND Gate
p

OUTANDq

OR Gate p q OUT

1 1 1

1 0 1

0 1 1

0 0 0

p
OUTORq

p q p  q

T T T

T F T

F T T

F F F

NOT Gate p OUT

1 0

0 1
p OUTNOT

p  p

T F

F T

Combinational Logic Circuits

Values get sent along wires connecting gates

NOT

OR

AND

AND

NOT

OUT

Combinational Logic Circuits

Values get sent along wires connecting gates

NOT

OR

AND

AND

NOT

OUT

Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND

OUT

Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND

OUT

Other Useful Gates

NAND

NOR

XOR

XNOR

p
q

out

p q out
0 0 1
0 1 1
1 0 1
1 1 0

p q out
0 0 1
0 1 0
1 0 0
1 1 0

out
p

q

p
q

out

p q out
0 0 1
0 1 0
1 0 0
1 1 1

p q out
0 0 0
0 1 1
1 0 1
1 1 0

out
p
q

Understanding logic and circuits

When do two logic formulas mean the same thing?

When do two circuits compute the same function?

What logical properties can we infer from other
ones?

Basic rules of reasoning and logic

• Allow manipulation of logical formulas

– Simplification

– Testing for equivalence

• Applications

– Query optimization

– Search optimization and caching

– Artificial Intelligence

– Program verification

Computing Equivalence

Given two propositions, can we write an algorithm to
determine if they are equivalent?

What is the runtime of our algorithm?

Computing Equivalence

Given two propositions, can we write an algorithm to
determine if they are equivalent?

Yes! Generate the truth tables for both propositions and check
if they are the same for every entry.

What is the runtime of our algorithm?

Every atomic proposition has two possibilities (T, F). If there are
atomic propositions, there are 𝒏 rows in the truth table.

Another approach: Logical Proofs

To show A is equivalent to B
– Apply a series of logical equivalences to

sub-expressions to convert A to B

To show A is a tautology
– Apply a series of logical equivalences to

sub-expressions to convert A to T

Another approach: Logical Proofs

To show A is equivalent to B
– Apply a series of logical equivalences to

sub-expressions to convert A to B

Example:
Let A be “ ”, and B be “ ”.
Our general proof looks like:

()

Another approach: Logical Proofs

Example:
Let A be “ ”, and B be “ ”.
Our general proof looks like:

()

Logical Proofs

Example:
Let A be “ ”, and B be “ ”.
Our general proof looks like:

() Idempotent

Idempotent

Logical Proofs

To show A is a tautology
– Apply a series of logical equivalences to

sub-expressions to convert A to T

Example:
Let A be “ ”.
Our general proof looks like:

()
T

Logical Proofs

Example:
Let A be “ ”.
Our general proof looks like:

()
T

Logical Proofs

Example:
Let A be “ ”.
Our general proof looks like:

()
T

Idempotent

Negation

Prove these propositions are equivalent: Option 1

𝒑 𝒒 𝒑 → 𝒒 𝒑 ∧ (𝒑 → 𝒒) 𝒑 ∧ 𝒒 𝒑 ∧ (𝒑 → 𝒒) ⟷ 𝒑 ∧ 𝒒

T T T T T T

T F F F F T

F T T F F T

F F T F F T

Make a Truth Table and show:

T

Prove: p  (p  q)  p  q

Prove these propositions are equivalent: Option 2

Prove: p  (p  q)  p  q

Prove these propositions are equivalent: Option 2

Prove: p  (p  q)  p  q

F
F

Law of Implication

Distributive

Negation

Commutative

Identity

Prove this is a Tautology: Option 1

(p  q)  (q  p)

𝒑 𝒒 𝒑 ∧ 𝒒 𝒒 ∨ 𝒑 𝒑 ∧ 𝒒 → 𝒒 ∨ 𝒑

T T T T T

T F F T T

F T F T T

F F F F T

Make a Truth Table and show:

T

Prove this is a Tautology: Option 2

(p  q)  (q  p)

Use a series of equivalences like so:

T

Prove this is a Tautology: Option 2

(p  q)  (q  p)

Use a series of equivalences like so:

T T
T

Law of Implication

DeMorgan

Associative

Associative

Commutative

Associative

Commutative (twice)

Negation (twice)

Domination/Identity

Logical Proofs of Equivalence/Tautology

• Not smaller than truth tables when there are only
a few propositional variables...

• ...but usually much shorter than truth table proofs
when there are many propositional variables

• A big advantage will be that we can extend them
to a more in-depth understanding of logic for
which truth tables don’t apply.

