CSE 311: Foundations of Computing

Lecture 2: More Logic, Equivalence & Digital Circuits

A CON-) 5 e o 3
DADDY, JUNCTION? CONTUNCTION JUNCTION, HOOKING UP WORDS AND
WHAT'S A \ WHAT'S YOUR FUNCTION? PHRASES AND CLAUSES!
CONJUNCTION? t L i
{‘*’3 |
vy = i

Last class: Some Connectives & Truth Tables

Negation (not) Conjunction (and)
p | —p p q pANqg
T E T T T
T F F
F| T
F T F
F F F
Disjunction (or) Exclusive Or
p q |pVvq q | pDgq

T F

BRI R)

L T e T e B ey
m |4 (T |
m | 4| T |(d

T T
T T
F F

Last class: Implication

“If it’s raining, then | have my umbrella”

MM |- |-H|T

n|H (M|

=M=l

P — q

(1) “I have collected all 151 Pokémon if | am a Pokémon master”
(2) “I have collected all 151 Pokémon only if | am a Pokémon master”

These sentences are implications in opposite directions:

P — q

(1) “I have collected all 151 Pokémon if | am a Pokémon master”
(2) “I have collected all 151 Pokémon only if | am a Pokémon master”

These sentences are implications in opposite directions:
(1) “Pokémon masters have all 151 Pokémon”
(2) “People who have 151 Pokémon are Pokémon masters”

So, the implications are:
(1) If | am a Pokémon master, then | have collected all 151 Pokémon.
(2) If 1 have collected all 151 Pokémon, then | am a Pokémon master.

P — q

Implication:
— p implies q
— whenever p is true g must be true
—if p then q
—qifp
— p is sufficient for q
—ponlyifq
— q is necessary for p

MM |H|-H|T

M| |m|H|e

=M |-l

Biconditional: p < q

e piffq

e pisequivalentto q

 pimplies g and g implies p

* pis necessary and sufficient for q

P g | P 4q

Biconditional: p < q

e piffqg
e pisequivalentto q

p implies g and g implies p
* pis necessary and sufficient for q

P4

mm |- -
M| =7 H[Q

L
T
F
F
T

Last class: Using Logical Connectives

Measles:

“You can get measles”
Mumps:

“You can get mumps”
MMR:

“You had the MMR vaccine”

“You can get measles and mumps if you didn’t have the
MMR vaccine, but if you had the MMR vaccine then you can’t
get either.” l

((Measles and Mumps) if not MMR) and (if MMR then not (Measles or Mumps))

\/

((Measles A Mumps) if =MMR) A (if MMR then —(Measles v Mumps))

Understanding the Vaccine Sentence

“You can get measles and mumps if you didn’t have
the MMR vaccine, but if you had the MMR vaccine you
can’t get either.” l

((Measles A Mumps) if =MMR) A (if MMR then —(Measles v Mumps))

|

(=-MMR - (Measles A Mumps)) A (MMR — —(Measles v Mumps))

Understanding the Vaccine Sentence

“You can get measles and mumps if you didn’t have
the MMR vaccine, but if you had the MMR vaccine you
can’t get either.” l

((Measles A Mumps) if =MMR) A (if MMR then —(Measles v Mumps))

|

(=-MMR - (Measles A Mumps)) A (MMR — —(Measles v Mumps))

Define shorthand ...
p : MMR
q : Measles
r : Mumps

v

(—p->@AT))A(p—-—(qVr))

Analyzing the Vaccine Sentence with a Truth Table

gqAT

-p— (QAT)

qVvr

—|(q \ 1")

p--(qVr)

(=p — (@A) A
(p—--(qVvr))

Analyzing the Vaccine Sentence with a Truth Table

q|r [np|gAT |p— (@AT) |qVT | =(@VT) |p—>(qQVT) (ﬁp;iqﬁ/\(z)\),ﬁ))
TITIF| T T T F F F
TIF|F| F T T F F F
FIT|F| F T T F F F
FIF|F| F T F T T T
T{T|T| T T T F T T
TIF|T| F F T F T F
FIT|T| F F T F T F
FIF|T| F F F T T F

Converse, Contrapositive

Implication: Contrapositive:
P—dq —q — P
Converse:
qa—p —pP — q
Consider

p: x is divisible by 2
q: x is divisible by 4

p—q
q—p

Converse, Contrapositive

Implication:

P—q
Converse:
qa—p

Consider
p: x is divisible by 2
q: x is divisible by 4

p—q
q—p

Contrapositive:

Divisible By 2

Not Divisible By 2

Divisible By 4

Not Divisible By 4

Converse, Contrapositive

Implication: Contrapositive:
P—dq —q — P
Converse:
qa—p —pP — q
Consider

p: x is divisible by 2

g: x is divisible by 4 Divisible By 2 | Not Divisible By 2

%
pP—4d Divisible By 4 4,8,12,... Impossible
q—p
—/g — 1
i P Not Divisible By 4 2,6,10,... 1,3,5,...

Converse, Contrapositive

Implication: Contrapositive:
P—q —q — P
Converse:
q—pP —P — 7q

How do these relate to each other?

P, q | P29 | 9=2p 7P |7q P —=>7q | 7q —=>"P

n|m =]
n|=|n|-

Converse, Contrapositive

Implication:

P—q
Converse:
qa—p

Contrapositive:

An implication and it's contrapositive
have the same truth value!

P, q | P29

q-—=>p

—p

—q

P 2>7q

n|m =]

M= |m |-
— (= ||

—|m ||

— = |7

- |m|[=|m

- || — |-

—|=|m|-

Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false

pv—p

pep

(P> Q) Ap

Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false
Py —p

This is a tautology. It’s called the “law of the excluded middle.
If p is true, then p v —p is true. If p is false, then p v —p is true.

pep
This is a contradiction. It’s always false no matter what truth
value p takes on.

(P—=>qrp
This is a contingency. When p=T, g=T, (T — T)AT is true.
When p=T, g=F, (T — F)AT is false.

Logical Equivalence

A = B means A and B are identical “strings”:
— pPAG=pAq

— PAQEQAP

Logical Equivalence

A = B means A and B are identical “strings”:
—PAq=pPAQq
These are equal, because they are character-for-character identical.
—PAQFQADP

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

A =B means A and B have identical truth values:
— PAQ=EPACQG

—PAG=qAPp

—PAqGEQVP

Logical Equivalence

A = B means A and B are identical “strings”:
—PAG=PpAQ
These are equal, because they are character-for-character identical.
—PAGFQAP
These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

A = B means A and B have identical truth values:
— PAG=EPAQ
Two formulas that are equal also are equivalent.
— PAG=EGAP
These two formulas have the same truth table!
— PAGEQVP
When p=T and q=F, p A q is false, but p V q is true!

A~ B vs. A=B

A = B is an assertion over all possible truth values
that A and B always have the same truth values.

A <> B is a proposition that may be true or false

depending on the truth values of the variables in A
and B.

A =B and (A < B) =T have the same meaning.

De Morgan’s Laws

=(PAQ)=—pVv—Q
=(pvQg)=—pA—Q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement, ask “when is the original statement
false”.

De Morgan’s Laws

=(PAQ)=—pvVv—Q
=(pvQg)=—pA—Q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement, ask “when is the original statement
false”.

It’s false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is not a bug.

De Morgan’s Laws

Example: =(p A q)=(—p v —q)

—p | g | pv—q | pAq | (pAq) | T(pAq) < (—pV—q)

M| M| 44O

M| 4T |4

De Morgan’s Laws

Example: =(p A q)=(—p v —q)

plqg|—wp | —q | pv—q | pAq| —(pAqQ) | —(pAq) < (—pV—Q)
T|T| F F F T F T
T|F F T T F T T
FI1T T F T F T T
F|F T T T F T T

De Morgan’s Laws

—(PAQ)=—pVv—q
—(Pva)=—pA—q

if (!(front != null && value > front.data))
front = new ListNode(value, front);

else {
ListNode current = front;
while (current.next != null && current.next.data < value))

current = current.next;
current.next = new ListNode(value, current.next);

De Morgan’s Laws

—(PAQ)=—pVv—q
—(Pva)=—pA—q

I (front != null & value > front.data)

front == null || value <= front.data

You’ve been using these for a while!

Law of Implication

p—>qg=—pVvqg

p—q

—pvqg

p—>q<> mpvq

N RN R RS

M| T4 (R

Law of Implication

p—>qg=—pVvqg

pv(qg

p—>q< pvqg

T

m| T4 4S

m| 4[4[

|4

—~ |||

e B e B e I

T
T
T

Some Equivalences Related to Implication

P—9 = —PpvQa

P—9 = —g—-Pp
p<Q = (p~>a)A(@—p)
pP<Q = P —Q

We will always give

Properties of Logical Connectives you this list!

Identity
—pAT=p
—pVF=p

Domination
—pVT=T
—pAF=F

Idempotent
—pPVpPp=EPp
—PAP=ED

Commutative
—pvq=qVp

—PAGQ=qAp

Associative

- (v Vvr=pv(qVvr)

- @A AT=pA(QAT)
Distributive
-pA@Vr)=(@AQV(PAT)
-pv@Ar)=(@VgA(pVr)
Absorption

-pV(PAg) =D

-pA(pVyg) =p

Negation

—pVap=T

—pA-p=F

Digital Circuits

Computing With Logic
— T corresponds to 1 or “high” voltage
—F corresponds to O or “low” voltage

Gates
— Take inputs and produce outputs (functions)
— Several Kinds of gates

— Correspond to propositional connectives (most
of them)

And Gate

AND Connective vs. AND Gate
pAq g_MAND ouT
p q pAqg p q ouTt
T T T 1 1 1
T F F 1 0 0
F T F 0 1 0
F F F 0 0 0
p [R——

AND ouT

q —
“block looks like D of AND”

Or Gate

OR Connective VS. OR Gate
pvg P Jor)—o
p q | pVq p q OouT
T T T 1 1 1
T F T 1 0 1
F T T 0 1 1
F F F 0 0 0

“arrowhead block looks like V”

Not Gates

NOT Connective VS. NOT Gate
- SN
Also called
inverter
P —p p ouT
T 1 0
F T 0 1

pom

Blobs are Okay!

You may write gates using blobs instead of shapes!

q
q

Combinational Logic Circuits

pP—1NOT

i
)

Values get sent along wires connecting gates

AND ouT

Combinational Logic Circuits

pP—1NOT

i
)

Values get sent along wires connecting gates

AND ouT

pA(=gA(rVs))

Combinational Logic Circuits

p

gD

AND

AND

Wires can send one value to multiple gates!

Combinational Logic Circuits

p

gD

AND

AND

Wires can send one value to multiple gates!

(PA=q)V(mgAT)

Computing Equivalence

Describe an algorithm for computing if two logical
expressions/circuits are equivalent.

What is the run time of the algorithm?

Compute the entire truth table for both of them!

There are 2" entries in the column for n variables.

Some Familiar Properties of Arithmetic

*x+y=y+x (Commutativity)

e x-(y+z)=x-y+x-z (Distributivity)

s x+y)+z=x+(y+2z) (Associativity)

Understanding Connectives

* Reflect basic rules of reasoning and logic
* Allow manipulation of logical formulas

— Simplification

— Testing for equivalence
* Applications

— Query optimization

— Search optimization and caching

— Artificial Intelligence

— Program verification

