CSE 311: Foundations of Computing

Lecture 2: More Logic, Equivalence & Digital Circuits

9] 3 e n I
CONTUNCTION TUNCTIoN, || HOOKING UP WORDS AND
WHAT'S YoUR FUNCTION?

EU—_@

A COM-
DADDY, JUNCTION?
WHAT'S A §
CONTUNETIONT

Last class: Some Connectives & Truth Tables

Negation (not)

p

—p

T

F

F

T

Disjunction (or)

p q (bVq
T T T
T F T
F T T
[[

Conjunction (and)

é’)

p | q \p/;q
T | T >
T F F
F T F
F Fyl) F
Exclusive Or
P | q | pDq
T T F £
T F T
F T T
F F F

Last class: Implication

“If it’s raining, then | have my umbrella”

M M|

n|-H|n|H |

°
—I—I(‘Ij/—lxl,
Q

N ™ ’\\"\’;E =

P — q

(1) “I have collected all 151 Pokémon if | am a Pokémon master”
(2) “I have collected all 151 Pokémon only if | am a Pokémon master”

=

These sentences are implications in opposite directions:

p->q
% ~
(1) “I have collected all 151 Pokémont I am a Pokémon masterB

(2) “I have collected all 151 Pokémon only if | am a Pokémon master”

These sentences are implications in opposite directions:
(1) “Pokémon masters have all 151 Pokémon”
(2) “People who have 151 Pokémon are Pokémon masters”

So, the implications are:
(1) If | am a Pokémon master, then | have collected all 151 Pokémon.
(2) If | have collected all 151 Pokémon, then | am a Pokémon master.

P — q

Implication:
— p implies q
— whenever p is true g must be true
—if pthen g
—qifp
— p is sufficient for q
- ponlyif g
— q is necessary for p

MM [T

n|=H (M|

Biconditional: p & ¢q

p iff q
p is equivalent to q

p implies g and g implies p

p is hecessary and sufficient for g

L

P g | p<d
T T T
/l- (: =
T I =
=1 1 "\

¢ >
=

&
-
.

1>
=

Biconditional: p & ¢q

p iff q

 pis equivalent to q

p implies g and q implies p

. Egnecessary and sufficient for q
-

P4

- -H IS
M| [H[Q

<>
-
F
F
-

Last class: Using Logical Connectives

Measles:

“You can get measles”
Mumps:

“You can get mumps”
MMR:

“You had the MMR vaccine”

“You can get measles and mumps if you didn’t have the
MMR vaccine, but if you had the MMR vaccine then you can’t
get either.” l

((Measles and Mumps) if not MMR) and (if MMR then not (Measles or Mumps))

\

((Measles A Mumps) if =MMR) A (if MMR then —(Measles v Mumps))

Understanding the Vaccine Sentence

“You can get measles and mumps if you didn’t have
the MMR vaccine, but if you had the MMR vaccine you
can’t get either.” l

((Measles A Mumps) if =MMR) A (if MMR then —(Measles v Mumps))
- >

Ry

(=-MMR - (Measles A Mumps)) A (MMR — —(Measles v Mumps))

Understanding the Vaccine Sentence

“You can get measles and mumps if you didn’t have
the MMR vaccine, but if you had the MMR vaccine you
can’t get either.” l

((Measles A Mumps) if =MMR) A (if MMR then —(Measles v Mumps))

|

(=-MMR - (Measles A Mumps)) A (MMR — —(Measles v Mumps))
Define shorthand ...
p . MMR
q : Measles
r : Mumps v

(p > (@AT)A(P - —(qVr))

Analyzing the Vaccine Sentence with a Truth Table

J

qnAT

-p — (qAT)

qVvr

—|(q \% 1")

p—--(qVr)

(=p — (@A) A
(p—--(qvr))

Analyzing the Vaccine Sentence with a Truth Table

\i/ QL
(=p — (@A) A
- AT | Ap — AT Vr |=a(gVr - a(gVvr
q|7r P4 p—(@qAT) | q (qvr) |p->—(qVvm) (P > ~(q V1))
TITIE| T T T F Fj F
T|F|F| F T T F F l F
FIT|F| F T T FVS) F
(
FIF|F| F T _ | F T T @&
TIT|T| T T T F> | T @6
— = — \b
TFT({FF m T F) T F
|
FIT|T| F ' F/ T Ff T F
/
]
FFTMF F F | T T F

Converse, Contrapositive

Implication: Contrapositive:
P—q q— P
Converse:
q—p P — —q
Consider

p: x is divisible by 2
q: x is divisible by 4

p—q
q—>p

Converse, Contrapositive

Implication:

P—q
Converse:
q—p

Consider
p: x is divisible by 2
q: x is divisible by 4

p—q
q—>p

Contrapositive:
q —
p —
Divisible By 2 Not Divisible By 2
Divisible By 4 (,k /g N
Not Divisible By 4
2, C)3

Converse, Contrapositive

Implication:

P—q

Converse:

q—pP

Consider

p: x is divisible by 2
q: x is divisible by 4

p—q —
—2 | a-p /
—q —> —p =

A

-?

—_—

q —

p —

Contrapositive:

/""’\/*\

D|V|5|ble By 2 A\Iot Divisible By 2
Divisible By 4 4,8,12,... Impossible
ﬁ Not Divisible By(2,6,10,... \ 1,3,5

Converse, Contrapositive

Implication: Contrapositive:
pP—q q — —pP
Converse:
q—>p P — —q

How do these relate to each other?

plq |p>q|ag>p |-p|-q | P>—q |—q>-p
L L T |F|¥ T T
TIF| < BT i E
FIT| T | & |T\|& — C
FlF| T —1 | I+ \

(= | A k 4
m—_

Converse, Contrapositive

Implication: Contrapositive:
p—q — q —> —p
Converse:
q—p o p— —q

An implication and it's contrapositive
/I@/e the same truth v% L

p| q /pﬁq\/q»b\ 2 |—q |[p>—q fqﬁﬁp\
T T 7 F| F T T
T|F Fof T { F | T T '{ F
FlTl 1)| F[|T]F Foll T
FlrNT/|\ T/t 7)]\01/

Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false

PVv-=p

pDp
@V\m&k&?‘\e(\
(p—>a) AP B
(; @’;ﬁ;‘
@Wﬁé\ﬂﬁwt\j f ‘):P

Tautologies!

Terminology: A compound proposition is a...
— Tautology if it is always true
— Contradiction if it is always false
— Contingency if it can be either true or false
PVv-=p

This is a tautology. It’s called the “law of the excluded middle.
If p is true, then p v —p is true. If p is false, then p v —p is true.

p&p
This is a contradiction. It’s always false nho matter what truth
value p takes on.

(P—>aq)Ap
This is a contingency. When p=T, g=T, (T = T)AT is true.
When p=T, q=F, (T > F)AT is false.

Logical Equivalence

A = B means A and B are identical “strings”:
—PANq=pPpANQq
v

—PAQFQAP >(

Logical Equivalence

A = B means A and B are identical “strings”:
—PANq=pPpANQq
These are equal, because they are character-for-character identical.
—PAQFQAP

These are NOT equal, because they are different sequences of
characters. They “mean” the same thing though.

A = B means A and B have identical truth values:

- pAg=pAq
(
- pPAG=qAp
(
— pPAQZEQGVP

Logical Equivalence

A = B means A and B are identical “strings”:
—PANq=pPpANQq
These are equal, because they are character-for-character identical.
—PAQFQAP
These are NOT equal, because they are different sequences of

characters. They “mean” the same thing though.

A = B means A and B have identical truth values:
— PAG=EPAQ
Two formulas that are equal also are equivalent.
— PAG=qAP
These two formulas have the same truth table!
—PANGEGVP
When p=T and q=F, p A q is false, but p V q is true!

A B vs. A=B

A = B is an assertion over all possible truth values
that A and B always have the same truth values.

@ a proposition that may be true or false
epending on the truth values of the variables in A
and B.

A

A =B and (A < B) =T have the same meaning.
V/

v

De Morgan’s Laws

—-(PAQ)=—pVv—Q
—-(pPvQg)=—pA-—(Q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement, ask “when is the original statement
false”.

De Morgan’s Laws

—-(PAQ)=—pVv—Q
—-(pPvQg)=—pA-—(Q

Negate the statement:
“My code compiles or there is a bug.”

To negate the statement, ask “when is the original statement
false”.

It's false when not(my code compiles) AND not(there is a bug).

Translating back into English, we get:
My code doesn’t compile and there is not a bug.

De Morgan’s Laws

Example: —(p A qg)=(—p Vv —Qq)

—p | —q | =pv—=q | pAqG | =(pAq) | =(pAQq) > (—pV—q)

M| T4 4TS

e e e I)

De Morgan’s Laws

Example: —(p A qg)=(—p Vv —Qq)

—PVv—q | pAG | =(pAq) | =(pAq) < (—pV—q)

F T Foo\ T

T\ F T

M| T4 4TS
e e e I)
el |

_|

T

T
T
T

\ T
T/ | F T)

it

6—|-n—|-n._|Q
==

De Morgan’s Laws

—(pPAQ)=—pVv—Q
—(P v Q) =—-p A0

if (!(front != null && value > front.data))
front = new ListNode(value, front);

else {
ListNode current = front;
while (current.next != null && current.next.data < value))

current = current.next;
current.next = new ListNode(value, current.next);

De Morgan’s Laws

—(pPAQ)=—pVv—Q
—(P v Q) =—-p A0

I (front != null && value > front.data)

front == null || value <= front.data

You've been using these for a while!

Law of Implication

p—>4g=—pvVvyag

p—>q<& pvqg

M| M AT

||| 4R

S MY

/\/)Y\’ﬂ'-cl

Law of Implication

p—>qg=—pVvq

pvdqg

p—>q<& pvqg

T

Mnm| T |44

m| M| 4R

a4l

e I e T i I B

e B e I i I

T
T
T

Some Equivalences Related to Implication

0 —> (=

0 —> C = |q > |p /\/

0> C = (Po>9a@-op)
0 < 0 = —p<—Q v

We will always give

Properties of Logical Connectives you this list!

Identity * Associative ()\’ ﬁ vV

- pAT=p - (vgvr=pv(gVvr)

- pVF=p —-(PAQDAT=pA(qAT)
Domination * Distributive

—pVT=T s —=pAQ@Vvr)=@Ag V(pAT)
- pAF=F —-pVv@Ar) =@V Ar(Vr)
Idempotent * Absorption

- pVp=p /—pV(pAq)Ep

-pAP=p -pA(VE=p v
Commutative ~ <K\s QX /\<&>\) CI-} Negation

- pVq=qVp = A(@Qo‘> —pVap=T

—DPAQ=EqAD —pA=p=F

~ °(Lﬁ t2) = XL9+KZ

Digital Circuits

Computing With Logic
—T corresponds to 1 or “high” voltage
—F corresponds to O or “low” voltage

Gates
— Take inputs and produce outputs (functions)
— Several kinds of gates

— Correspond to propositional connectives (most
of them)

And Gate

AND Connective vs. AND Gate
PAQ g: AND }—O0UT
p q | PANq p q ouT
T T T 1 1 1
T F F 1 0 0
F T F 0 1 0
F F F 0 0 0
p [——
AND ouT
q —

“block looks like D of AND”

Or Gate

OR Connective VS. OR Gate
pvg P Jory—our
p q | PVq p q ouT
T T T 1 1 1
T F T 1 0 1
F T T 0 1 1
F F F 0 0 0

“arrowhead block looks like V”

Not Gates

NOT Connective VS. NOT Gate
—|p p ouT \
Also called
inverter
P —-p p ouT
T 1 0
F T 0 1

p—{NOT ouT

Blobs are Okay!

You may write gates using blobs instead of shapes!

q
q

pOUT

Combinational Logic Circuits

P>
q

Values get sent along wires connecting gates

Combinational Logic Circuits

P>
g —ep—
=DS

Values get sent along wires connecting gates

5

\ pA(=gA(rVs))

Combinational Logic Circuits

p

g

AND

AND

Wires can send one value to multiple gates!

Combinational Logic Circuits

p

g

AND

AND

Wires can send one value to multiple gates!

(PA=q)V(mqAT)

Computing Equivalence

Describe an algorithm for computing if two logical
expressions/circuits are equivalent.

What is the run time of the algorithm?

Compute the entire truth table for both of them!

There are 2" entries in the column for n variables.

Some Familiar Properties of Arithmetic

*xt+ty=y+x (Commutativity)

e x-(y+z)=x-y+x-z (Distributivity)

s (x+y)+z=x+(y+2z) (Associativity)

Understanding Connectives

* Reflect basic rules of reasoning and logic
* Allow manipulation of logical formulas

— Simplification

— Testing for equivalence
* Applications

— Query optimization

— Search optimization and caching

— Artificial Intelligence

— Program verification

