
CSE 311: Foundations of Computing I

Homework 8 (due Thursday, May 31st at 11:59 PM)

Directions: Write up carefully argued solutions to the following problems. Your solution should be clear enough
that it should explain to someone who does not already understand the answer why it works. You may use results
from lecture, the theorems handout, and previous homeworks without proof.

1. NFA Design [Online] (14 points)
For each of the following, create an NFA that recognizes exactly the language described.

(a) [7 Points]The set of binary strings that contain 11 or do not contain 00

(b) [7 Points] The set of binary strings that contain 11 and do not contain 00

You can submit and check your answers to this question using
https://grinch.cs.washington.edu/cse311/fsm.

2. NFA-to-DFA [Online] (15 points)
Use the construction from lecture to convert the following NFA to a DFA. Label each state of the DFA using
appropriate states of the original NFA.

q3

q0

q4

q1

q2

ε

1

1

ε

0

0

0

1

1

ε

You can submit and check your answers to this question using
https://grinch.cs.washington.edu/cse311/fsm.

In addition, you must also take a screenshot of your diagram and submit it
in Canvas. As noted above, make sure that your states are labelled by the
corresponding NFA states (if any).

1

https://grinch.cs.washington.edu/cse311/fsm
https://grinch.cs.washington.edu/cse311/fsm


3. Mini-Me [Online] (15 points)
Use the algorithm for minimization that we discussed in class to minimize the following automaton. For each
step of the algorithm write down the groups (of states), which group was split in the step the reason for splitting
that group. At the end, write down the minimized DFA.

q0
[1]

q4
[0]

q3
[0]

q1
[1]

q6
[1]

q5
[1]

q2
[1]

1

0

1

0
1

0

1

0

1

0

1

0

1

0

You can submit and check your answers to this question using
https://grinch.cs.washington.edu/cse311/fsm.

In addition, you must submit the documentation of each step of the algorithm,
as described above, in Canvas.

4. RE-to-NFA [Online] (6 points)
Draw NFAs that recognize the language described by the regular expression 0110∗(110∗ ∪ 001∗)∗. Use the
construction given in lecture or in the book or produce something simpler if you can.

You can submit and check your answers to this question using
https://grinch.cs.washington.edu/cse311/fsm.

5. Irregularity (20 points)
Prove that that the set of binary strings of the form {0n1m0n : m < n} is not regular. (You must use the
method described in class for this.)

6. Diagonalization (15 points)
Let B be the set of all infinite binary sequences that are 1 in odd positions, i.e., any string in B is of the form

1 ∗ 1 ∗ 1 ∗ 1 ∗ . . .

where we can have 0 or a 1 instead of each ∗. Show that B is uncountable using a proof by diagonalization.

7. Countability (15 points)
Complex numbers can be written as a + bi where a, b are real numbers and i is the square root of −1. Show
that set R of complex numbers given by

R = {a+ bi : a, b are rational}

is countable

2

https://grinch.cs.washington.edu/cse311/fsm
https://grinch.cs.washington.edu/cse311/fsm


8. Extra Credit: Pratt-Pratt-Pratt (0 points)
Suppose we want to determine whether a string x of length n contains a string y = y1y2 . . . ym with m � n.
To do so, we construct the following NFA:

s0 s1 s2 ... sm−1 sm
y1 y2 y3 ym−1 ym

0, 1 0, 1

(where the . . . includes states s3, . . . , sm−2). We can see that this NFA matches x iff x contains the string y.
We could check whether this NFA matches x using the parallel exploration approach, but doing so would

take O(mn) time, no better than the obvious brute-force approach for checking if x contains y. Alternatively,
we can convert the NFA to a DFA and then run the DFA on the string x. A priori, the number of states in
the resulting DFA could be as large as 2m, giving an Ω(2m + n) time algorithm, which is unacceptably slow.
However, below, you will show that this approach can be made to run in O(m2 + n) time.

(a) Consider any subset of states, S, found while converting the NFA above into a DFA. Prove that, for each
1 ≤ j ≤ m, knowing sj ∈ S functionally determines whether si ∈ S or not for each 1 ≤ i < j.

(b) Explain why this means that the number of subsets produced in the construction is at most 2m.

(c) Explain why the subset construction thus runs in only O(m2) time (assuming the alphabet size is O(1)).

(d) How many states would this reduce to if we then applied the state minimization algorithm?

(e) Explain why part (c) leads to a bound of O(m2 + n) for the full algorithm (without state minimization).

(f) Briefly explain how this approach can be modified to count (or, better yet, find) all the substrings matching
y in the string x with the same overall time bound.

Note that any string matching algorithm takes Ω(m+ n) = Ω(n) time in the worst case since it must read the
entire input. Thus, the above algorithm is optimal whenever m2 = O(n), or equivalently, m = O(

√
n), which is

the case for normal inputs circumstances.

3


