
CSE 311: Foundations of Computing I
Homework 5 (due May 2nd at 11:59 PM)

Directions: Write up carefully argued solutions to the following problems. Your solution should be clear
enough that it should explain to someone who does not already understand the answer why it works. You may
use results from lecture, the theorems handout, and previous homeworks without proof.

1. GCDs are easier than factoring (10 points)
(a) [1 Point] Compute gcd(0, 1275).

(b) [3 Points] Compute gcd(138, 69) using Euclid’s Algorithm.

(c) [6 Points] Compute gcd(91, 434) using Euclid’s Algorithm. Show your intermediate results.

2. Solveit (20 points)
(a) [5 Points] Compute the multiplicative inverse of 17 modulo 122 using the Extended Euclidean Algorithm.

Show your work.

(b) [5 Points] Find all solutions x with 0 ≤ x < 43 to the following equation:

67x ≡ 3 (mod 43)

Show your work.

(c) [5 Points] Prove that there are no integer solutions to the following equation:

51x ≡ 2 (mod 141)

(d) [5 Points] Find all solutions to
10x ≡ 70 (mod 135)

using the property that you proved in Problem 5 of Homework 4 (“Modular Numerology”).

3. ModularExponentiationQuestion
(10 points)

Compute 370 mod 100 using the efficient modular exponentation algorithm. Show your intermediate results.
How many multiplications does the algorithm use for this computation?

4. Palindromes (20 points)
We say an integer is palindromic if the digits read the same when written forward or backward. Prove that
every palindromic integer with an even number of digits is divisible by 11.

Hint 1: 10 ≡ −1(mod 11).
Hint 2: Use the base-10 representation of the number as a summation.
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5. An Equality (20 points)
Prove that for every positive integer n, the following equality is true:

1 · 21 + 2 · 22 + · · ·+ n · 2n = (n− 1)2n+1 + 2.

6. An Inequality (20 points)
Prove that for all n ∈ N and all x ∈ R with x > −2 the inequality (2 + x)n ≥ 2n + n2n−1x is true.

7. Extra credit: RSA and modular exponentiation (0 points)
We know that we can reduce the base of an exponent modulo m : ak ≡ (a mod m)k (mod m). But the same
is not true of the exponent itself! That is, we cannot write ak ≡ ak mod m (mod m). This is easily seen to be
false in general. Consider, for instance, that 210 mod 3 = 1 but 210 mod 3 mod 3 = 21 mod 3 = 2.
The correct law for the exponent is more subtle. We will prove it in steps....

a) Let R = {n ∈ Z : 1 ≤ n ≤ m− 1 ∧ gcd(n,m) = 1}. Define the set aR = {ax mod m : x ∈ R}. Prove
that aR = R for every integer a > 0 with gcd(a,m) = 1.

b) Consider the product of all the elements in R modulo m and the elements in aR modulo m. By comparing
those two expressions, conclude that for all a ∈ R we have aφ(m) ≡ 1 (mod m), where φ(m) = |R|.

c) Use the last result to show that, for any b ≥ 0 and a ∈ R, we have ab ≡ ab mod φ(m) (mod m).

d) Finally, prove the following two facts about the function φ above. First, if p is prime, then φ(p) = p− 1.
Second, for any positive integers a and b with gcd(a, b) = 1, we have φ(ab) = φ(a)φ(b).

The two facts from part d imply that, if p and q are primes, then φ(pq) = (p− 1)(q− 1). That along with part
c prove of the final claim from lecture about RSA, completing the proof of correctness of the algorithm.
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