CSE 311: Foundations of Computing |

Section 7: Strong Induction and Recursive Sets Solutions

1. Binary Representations

Prove that every natural number can be written as a sum of distinct powers of two. (l.e., that it has a unique
binary representation.)

Solution:

Let P(n) be “n can written as a sum of distinct powers of two, each no larger than n"". We will prove P(n) for
all integers n € N by induction.

Base Case (n = 0): 0 is equal to an empty sum (no powers of two), so P(0) holds.
Induction Hypothesis: Assume that P(j) holds for all integers 0 < j < k for some arbitrary k € N.
Induction Step: Our goal is to show P(k + 1). l.e., that k + 1 can be written as a sum of distinct powers of

two, each no larger than & + 1.

Let 2¢ be the largest power of two not greater than k4 1 (i.e. £ = |logy(k +1)]). Let r = (k +1) — 2,
and note that 7 < 2/ < k + 1, so that we can apply the inductive hypothesis to r to write it as a sum
r =20 422 4 ... 4 2% where each i; is distinct and satisfies 2 < r. Note that the latter fact implies
ij < £ since r < 2!,

Now, write k + 1 as r + 2¢ = 21 4 2% ... 4 2% 4 20 3 sum of powers of two. Each of the ij's are
distinct from each other, by assumption, and from ¢, since each satisfies i; < ¢. Furthermore, we have
24 <1 < 20 < k+1, so none of the powers of two in the sum are larger than k+ 1. This shows P(k+1).

Conclusion: P(n) holds for all integers n € N by induction.

2. Cantelli’s Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in a given year is described by the function f:
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fln=1)— f(n—2) forn > 2

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n.

Solution:
Let P(n) be “f(n) = n". We prove that P(n) is true for all n € N by strong induction on n.

Base Cases (n =0,1): f(0) = 0 by definition, so P(0) holds, and f(1) =1, so P(1) holds.

Induction Hypothesis: Assume that for some arbitrary integer k£ > 1, P(j) holds for all 0 < j < k. That is,
for each number in this range, we have f(j) = j.

Induction Step: We show P(k + 1), i.e. that f(k+1) =k + 1.



Since k +1 > 2, we have

flk+1)=2f(k)— f(k—-1) Definition of f
=2(k)—f(k—1) Inductive Hypothesis
=2(k)—(k—-1) Inductive Hypothesis
=k+1 Algebra

which is P(k + 1),

Therefore, P(n) is true for all n € N.

3. Recursively Defined Sets of Strings
For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify
that your solution is correct.

(a)

Binary strings of even length.

Solution:

Basis: ¢ € S.

Recursive Step: If z € S, then 200,201, 210,211 € S.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.

“Brief” Justification: We will show that « € S iff z has even length (i.e., |z| = 2n for some n € N). (Note:
“brief” is in quotes here. Try to write shorter explanations in your homework assignment when possible!)

Suppose x € S. If z is the empty string, then it has length 0, which is even. Otherwise, z is built up from
the empty string by repeated application of the recursive step, so it is of the form x1xs - - - x,,, where each
x; € {00,01,10,11}. In that case, we can see that |z| = |z1| + |z2| + - - - + |zn| = 2n, which is even.

Now, suppose that = has even length. If it's length is zero, then it is the empty string, which is in S.
Otherwise, it has length 2n for some n > 0, and we can write = in the form zxs---x,, where each
x; € {00,01,10,11} has length 2. Hence, we can see that x can be built up from the empty string by
applying the recursive step with x1, then x5, and so on up to x,,, which shows that z € S.

Binary strings not containing 10 as a substring and having at least as many 1s as Os.

Solution:

If the string does not contain 10, then the first 1 in the string can only be followed by more 1s. Hence, it
must be of the form 01" for some m,n € N. The second condition says that we have m < n.

Basis: ¢ € S.

Recursive Step: If z € S, then 0z1 € S and 21 € S.

Exclusion Rule: Each element of S is obtained from the basis and a finite number of applications of the
recursive step.

Brief Justification: The empty string satisfies the property, and the recursive step cannot place a 0 after a
1 since it only adds 1s on the right. Hence, every string in .S satisfies the property.

In the other direction, from our discussion above, any string of this form can be written as zy, where
x=0m1" and y = 1™, since n > m. We can build up the string x from the empty string by applying
the rule  +— 0x1 m times and then produce the string xy by applying the rule z — z1 n — m times,
which shows that the string is in S.



