1. Binary Representations
Prove that every natural number can be written as a sum of distinct powers of two. (I.e., that it has a unique binary representation.)

Solution:
Let $P(n)$ be “n can written as a sum of distinct powers of two, each no larger than n”. We will prove $P(n)$ for all integers $n \in \mathbb{N}$ by induction.

Base Case ($n = 0$): 0 is equal to an empty sum (no powers of two), so $P(0)$ holds.

Induction Hypothesis: Assume that $P(j)$ holds for all integers $0 \leq j \leq k$ for some arbitrary $k \in \mathbb{N}$.

Induction Step: Our goal is to show $P(k + 1)$, i.e., that $k + 1$ can be written as a sum of distinct powers of two, each no larger than $k + 1$.

Let 2^ℓ be the largest power of two not greater than $k + 1$ (i.e. $\ell = \lfloor \log_2(k + 1) \rfloor$). Let $r = (k + 1) - 2^\ell$, and note that $r < 2^\ell \leq k + 1$, so that we can apply the inductive hypothesis to r to write it as a sum $r = 2^{i_1} + 2^{i_2} + \cdots + 2^{i_t}$, where each i_j is distinct and satisfies $2^{i_j} \leq r$. Note that the latter fact implies $i_j < \ell$ since $r < 2^\ell$.

Now, write $k + 1$ as $r + 2^\ell = 2^{i_1} + 2^{i_2} + \cdots + 2^{i_t} + 2^\ell$, a sum of powers of two. Each of the i_j’s are distinct from each other, by assumption, and from ℓ, since each satisfies $i_j < \ell$. Furthermore, we have $2^{i_j} \leq r < 2^\ell \leq k + 1$, so none of the powers of two in the sum are larger than $k + 1$. This shows $P(k + 1)$.

Conclusion: $P(n)$ holds for all integers $n \in \mathbb{N}$ by induction.

2. Cantelli’s Rabbits
Xavier Cantelli owns some rabbits. The number of rabbits he has in a given year is described by the function f:

$$
\begin{align*}
 f(0) &= 0 \\
 f(1) &= 1 \\
 f(n) &= 2f(n - 1) - f(n - 2) & \text{for } n \geq 2
\end{align*}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n.

Solution:
Let $P(n)$ be “$f(n) = n$”. We prove that $P(n)$ is true for all $n \in \mathbb{N}$ by strong induction on n.

Base Cases ($n = 0, 1$): $f(0) = 0$ by definition, so $P(0)$ holds, and $f(1) = 1$, so $P(1)$ holds.

Induction Hypothesis: Assume that for some arbitrary integer $k \geq 1$, $P(j)$ holds for all $0 \leq j \leq k$. That is, for each number in this range, we have $f(j) = j$.

Induction Step: We show $P(k + 1)$, i.e. that $f(k + 1) = k + 1$.
Since \(k + 1 \geq 2 \), we have
\[
f(k + 1) = 2f(k) - f(k - 1)
\]
\[
= 2(k) - f(k - 1)
\]
\[
= 2(k) - (k - 1)
\]
\[
= k + 1
\]
which is \(P(k + 1) \).
Therefore, \(P(n) \) is true for all \(n \in \mathbb{N} \).

3. Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify that your solution is correct.

(a) Binary strings of even length.

Solution:

Basis: \(\varepsilon \in S \).
Recursive Step: If \(x \in S \), then \(x00, x01, x10, x11 \in S \).
Exclusion Rule: Each element of \(S \) is obtained from the basis and a finite number of applications of the recursive step.

"Brief" Justification: We will show that \(x \in S \) iff \(x \) has even length (i.e., \(|x| = 2n \) for some \(n \in \mathbb{N} \)). (Note: “brief” is in quotes here. Try to write shorter explanations in your homework assignment when possible!)

Suppose \(x \in S \). If \(x \) is the empty string, then it has length 0, which is even. Otherwise, \(x \) is built up from the empty string by repeated application of the recursive step, so it is of the form \(x_1x_2\cdots x_n \), where each \(x_i \in \{00, 01, 10, 11\} \). In that case, we can see that \(|x| = |x_1| + |x_2| + \cdots + |x_n| = 2n \), which is even.

Now, suppose that \(x \) has even length. If it’s length is zero, then it is the empty string, which is in \(S \). Otherwise, it has length \(2n \) for some \(n > 0 \), and we can write \(x \) in the form \(x_1x_2\cdots x_n \), where each \(x_i \in \{00, 01, 10, 11\} \) has length 2. Hence, we can see that \(x \) can be built up from the empty string by applying the recursive step with \(x_1 \), then \(x_2 \), and so on up to \(x_n \), which shows that \(x \in S \).

(b) Binary strings not containing 10 as a substring and having at least as many 1s as 0s.

Solution:

If the string does not contain 10, then the first 1 in the string can only be followed by more 1s. Hence, it must be of the form \(0^m1^n \) for some \(m, n \in \mathbb{N} \). The second condition says that we have \(m \leq n \).

Basis: \(\varepsilon \in S \).
Recursive Step: If \(x \in S \), then \(0x1 \in S \) and \(x1 \in S \).
Exclusion Rule: Each element of \(S \) is obtained from the basis and a finite number of applications of the recursive step.

Brief Justification: The empty string satisfies the property, and the recursive step cannot place a 0 after a 1 since it only adds 1s on the right. Hence, every string in \(S \) satisfies the property.

In the other direction, from our discussion above, any string of this form can be written as \(xy \), where \(x = 0^m1^n \) and \(y = 1^{n-m} \), since \(n \geq m \). We can build up the string \(x \) from the empty string by applying the rule \(x \mapsto 0x1 \) \(m \) times and then produce the string \(xy \) by applying the rule \(x \mapsto x1 \) \(n-m \) times, which shows that the string is in \(S \).