Section 6: Induction

1. Extended Euclidean Algorithm
 (a) Find the multiplicative inverse \(y \) of 7 mod 33. That is, find \(y \) such that \(7y \equiv 1 \pmod{33} \). You should use the extended Euclidean Algorithm. Your answer should be in the range \(0 \leq y < 33 \).

 (b) Now, solve \(7z \equiv 2 \pmod{33} \).

2. Induction with Sums: Equality
 For any \(n \in \mathbb{N} \), define \(S_n \) to be the sum of the squares of the first \(n \) positive integers, or
 \[
 S_n = \sum_{i=1}^{n} i^2.
 \]
 For all \(n \in \mathbb{N} \), prove that \(S_n = \frac{1}{6}n(n+1)(2n+1) \).

3. A Strict Inequality
 Prove that \(6n + 6 < 2^n \) for all \(n \geq 6 \).

4. Divisibility by Induction
 Prove that \(9 \mid n^3 + (n+1)^3 + (n+2)^3 \) for all \(n > 1 \) by induction.

5. Another Inequality
 Prove for all \(n \in \mathbb{N} \) that, if you have numbers \(a_1, \ldots, a_n \) and \(b_1, \ldots, b_n \), with \(\forall i \in [n]. a_i \leq b_i \), then:
 \[
 \sum_{i=1}^{n} a_i \leq \sum_{i=1}^{n} b_i
 \]