Section 3: Predicate Logic and Inference Solutions

1. Quantifier Switch

Consider the following pairs of sentences. For each pair, determine if one implies the other (or if they are equivalent).

(a) $\forall x \ \forall y \ P(x,y)$ $\forall y \ \forall x \ P(x,y)$

Solution:

These sentences are the same; switching universal quantifiers makes no difference.

(b) $\exists x \exists y P(x,y) \qquad \exists y \exists x P(x,y)$

Solution:

These sentences are the same; switching existential quantifiers makes no difference.

(c) $\forall x \exists y P(x, y)$ $\forall y \exists x P(x, y)$

Solution:

These are only the same if P is symmetric (e.g. the order of the arguments doesn't matter). If the order of the arguments does matter, then these are different statements. For instance, if P(x,y) is "x < y, then the first statement says "for every x, there is a corresponding y such that x < y, whereas the second says "for every y, there is a corresponding x such that x < y. In other words, in the first statement y is a function of x, and in the second x is a function of y.

(d) $\forall x \exists y P(x,y) \qquad \exists x \forall y P(x,y)$

Solution:

These two statements are usually different.

2. Formal Proof (Direct Proof Rule)

Show that $\neg p \rightarrow s$ follows from $p \lor q$, $q \rightarrow r$ and $r \rightarrow s$.

Solution:

1.	$p \vee q$			[Given]
2.	$q \to r$			[Given]
3.	$r \rightarrow s$			[Given]
	4.1.	$\neg p$	[Assumption]	
	4.2.	q	[Elim of \lor : 1, 4.1]	
	4.3.	r	[MP of 4.2, 2]	
	4.4.	s	[MP 4.3, 3]	
4.	$\neg p \rightarrow s$			[Direct Proof Rule]

3. Formal Proof

Show that $\neg p$ follows from $\neg(\neg r \lor t)$, $\neg q \lor \neg s$ and $(p \to q) \land (r \to s)$.

Solution:

1.	$\neg(\neg r \lor t)$	[Given]
2.	$\neg q \vee \neg s$	[Given]
3.	$(p \to q) \land (r \to s)$	[Given]
4.	$\neg \neg r \land \neg t$	[DeMorgan's Law, 1]
5.	$\neg \neg r$	[Elim of ∧: 4]
6.	r	[Double Negation, 5]
7.	$r \rightarrow s$	[Elim of ∧, 3]
8.	\$	[MP, 6,7]
9.	$\neg q$	[Elim of ∨, 2, 8]
10.	$p \rightarrow q$	[Elim of ∧, 3]
11.	$\neg q \rightarrow \neg p$	[Contrapositive, 10]
12.	$\neg p$	[MP, 9,11]