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Final exam
Logistics, format, and topics.
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Final exam logistics

Monday, December 10 in  102
Section A at 16:30-18:20,
Section B at 14:30-16:20.

JHN

4

http://www.washington.edu/students/maps/map.cgi?JHN
http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture28.html?print-pdf#/


Final exam logistics

Monday, December 10 in  102
Section A at 16:30-18:20,
Section B at 14:30-16:20.

Important: take the exam at the time assigned to your section.
If you have a scheduling conflict, email the staff ASAP.
Bring your UW ID and have it ready to be checked during the exam.

JHN

4

http://www.washington.edu/students/maps/map.cgi?JHN
http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture28.html?print-pdf#/


Final exam logistics

Monday, December 10 in  102
Section A at 16:30-18:20,
Section B at 14:30-16:20.

Important: take the exam at the time assigned to your section.
If you have a scheduling conflict, email the staff ASAP.
Bring your UW ID and have it ready to be checked during the exam.

Final review session is on Sunday, Dec 09 at 15:00-17:00 in  301.
Bring your questions!

JHN

GWN
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Final exam format and topics

Format
8 problems in 110 minutes.
Closed book, closed notes, no calculators, no cellphones.
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Final exam format and topics

Format
8 problems in 110 minutes.
Closed book, closed notes, no calculators, no cellphones.

Questions and topics
(1) Write a regex, DFA, CFG for given languages.
(2) A formal proof.
(3) A proof by strong induction.
(4) A proof by structural induction.
(5) NFA to DFA conversion.
(6) DFA minimization.
(7) A proof that a language is irregular.
(8) Short answers on modular arithmetic, relations,
logic, uncomputability.
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Final exam format and topics

Format
8 problems in 110 minutes.
Closed book, closed notes, no calculators, no cellphones.

Questions and topics
(1) Write a regex, DFA, CFG for given languages.
(2) A formal proof.
(3) A proof by strong induction.
(4) A proof by structural induction.
(5) NFA to DFA conversion.
(6) DFA minimization.
(7) A proof that a language is irregular.
(8) Short answers on modular arithmetic, relations,
logic, uncomputability.

You’ve solved similar
problems on
homeworks and in
sections.

Do the easy parts of all
the problems first.
Don’t get stuck on one
problem!
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Countability and uncomputability
A quick recap of .Lecture 27
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Countable and uncountable sets

Countable set
A set is countable iff it has the same cardinality as some subset of .ℕ
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Countable and uncountable sets

Countable set
A set is countable iff it has the same cardinality as some subset of .

Countable sets
 (natural numbers)
 (integers)

 (positive rational numbers)
 over finite 

All (Java) programs

ℕ

ℕ
ℤ
ℚ+

Σ∗ Σ
Shown by dovetailing.

7

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture28.html?print-pdf#/


Countable and uncountable sets

Countable set
A set is countable iff it has the same cardinality as some subset of .

Countable sets
 (natural numbers)
 (integers)

 (positive rational numbers)
 over finite 

All (Java) programs

Uncountable sets
All real numbers in 
All functions from  to 

ℕ

ℕ
ℤ
ℚ+

Σ∗ Σ
Shown by dovetailing.

[0, 1)
ℕ {0, 1}

Shown by diagonalization.
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Uncomputable functions

We have seen that …
The set of all (Java) programs is countable.
The set of all functions  is uncountable.
So there must be some function that is not computable by any program!

Finite
{010,11, 21}

Regular
0*1* DFA

NFA
Regex

Context-Free
CFG

All

S → 0S1 | ε

Java

C
C++

General Programming

...

{0n1n2n : n ≥ 0}

f : ℕ → {0, 1}
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Uncomputable functions

We have seen that …
The set of all (Java) programs is countable.
The set of all functions  is uncountable.
So there must be some function that is not computable by any program!

halt(p, x)

Finite
{010,11, 21}

Regular
0*1* DFA

NFA
Regex

Context-Free
CFG

All

S → 0S1 | ε

Java

C
C++

General Programming

...

{0n1n2n : n ≥ 0}

f : ℕ → {0, 1}

We’ll study one such
important function
today.
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Undecidability of the halting problem
Important problems computers can’t solve.
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First, some notation …

We’ll be talking about (Java) code.
code(P) will denote “the code of the program P”.
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First, some notation …

We’ll be talking about (Java) code.
code(P) will denote “the code of the program P”.

Consider :this program

public static boolean P(String x) {
  return x.matches("public .*");
}

10

http://tpcg.io/eUfvB4
http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture28.html?print-pdf#/


First, some notation …
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Consider :

What is P(code(P))?

this program

public static boolean P(String x) {
  return x.matches("public .*");
}
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First, some notation …

We’ll be talking about (Java) code.
code(P) will denote “the code of the program P”.

Consider :

What is P(code(P))?
true

this program

public static boolean P(String x) {
  return x.matches("public .*");
}
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And now, the halting problem!

The Halting Problem
Given an input  and code(P) for any program ,
output true if  halts on the input , and
output false if  does not halt (diverges) on the input .

x P
P x

P x
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And now, the halting problem!

The Halting Problem
Given an input  and code(P) for any program ,
output true if  halts on the input , and
output false if  does not halt (diverges) on the input .

Can’t we determine this by just running  on ?

x P
P x

P x

P x
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And now, the halting problem!

The Halting Problem
Given an input  and code(P) for any program ,
output true if  halts on the input , and
output false if  does not halt (diverges) on the input .

Can’t we determine this by just running  on ?
No! We can’t tell if  diverged on  or is taking a long time to return.

x P
P x

P x

P x
P x
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The halting problem is undecidable

The Halting Problem
Given an input  and code(P) for any program ,
output true if  halts on the input , and
output false if  does not halt (diverges) on the input .

Theorem (due to Alan Turing)
There is no program that solves the halting problem.

x P
P x

P x
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The halting problem is undecidable

The Halting Problem
Given an input  and code(P) for any program ,
output true if  halts on the input , and
output false if  does not halt (diverges) on the input .

Theorem (due to Alan Turing)
There is no program that solves the halting problem.

x P
P x

P x

In other words, there is no program that computes the function described
by the halting problem. This function is therefore uncomputable. Because
the function outputs a boolean (a yes/no decision), we say that the
underlying problem is undecidable.
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Proof by contradiction
Suppose that H is a program that solves the halting problem.
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Proof by contradiction
Suppose that H is a program that solves the halting problem.

Then, we can write the program D as follows:

public static void D(String x) {
  if (H(x, x) == true) {
    while (true); // diverge
  } else {
    return;       // halt
  }
}
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Does D(code(D)) halt?
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Proof by contradiction
Suppose that H is a program that solves the halting problem.

Then, we can write the program D as follows:

H solves the halting problem means the following:
If D(x) halts then H(code(D),x) is true otherwise H(code(D),x) is false.
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Proof by contradiction
Suppose that H is a program that solves the halting problem.

Then, we can write the program D as follows:

H solves the halting problem means the following:
If D(x) halts then H(code(D),x) is true otherwise H(code(D),x) is false.

Suppose that D(code(D)) halts.
Then, by definition of H, it must be that H(code(D),code(D)) is true.
But in that case, D(code(D)) doesn’t halt by definition of D.

public static void D(String x) {
  if (H(x, x) == true) {
    while (true); // diverge
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    return;       // halt
  }
}

Does D(code(D)) halt?
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Proof by contradiction
Suppose that H is a program that solves the halting problem.

Then, we can write the program D as follows:

H solves the halting problem means the following:
If D(x) halts then H(code(D),x) is true otherwise H(code(D),x) is false.

Suppose that D(code(D)) halts.
Then, by definition of H, it must be that H(code(D),code(D)) is true.
But in that case, D(code(D)) doesn’t halt by definition of D.

Suppose that D(code(D)) doesn’t halt.
Then, by definition of H, it must be that H(code(D),code(D)) is false.
But in that case, D(code(D)) halts by definition of D.

public static void D(String x) {
  if (H(x, x) == true) {
    while (true); // diverge
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Proof by contradiction
Suppose that H is a program that solves the halting problem.

Then, we can write the program D as follows:

H solves the halting problem means the following:
If D(x) halts then H(code(D),x) is true otherwise H(code(D),x) is false.

Suppose that D(code(D)) halts.
Then, by definition of H, it must be that H(code(D),code(D)) is true.
But in that case, D(code(D)) doesn’t halt by definition of D.

Suppose that D(code(D)) doesn’t halt.
Then, by definition of H, it must be that H(code(D),code(D)) is false.
But in that case, D(code(D)) halts by definition of D.

So we reach a contradiction in either case.
Therefore, our assumption that H exists must be false. 

public static void D(String x) {
  if (H(x, x) == true) {
    while (true); // diverge
  } else {
    return;       // halt
  }
}

Does D(code(D)) halt?

◻
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Where did the idea for creating D come from?

Note that D halts on code(P)
iff H(code(P),code(P)) outputs false, i.e.,
iff P doesn’t halt on the input code(P).

Therefore, D differs from every program P on the input code(P).

public static void D(Object x) {
  if (H(x, x) == true) {
    while (true); // diverge
  } else {
    return;       // halt
  }
}
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Where did the idea for creating D come from?

Note that D halts on code(P)
iff H(code(P),code(P)) outputs false, i.e.,
iff P doesn’t halt on the input code(P).

Therefore, D differs from every program P on the input code(P).
This sounds like diagonalization!

public static void D(Object x) {
  if (H(x, x) == true) {
    while (true); // diverge
  } else {
    return;       // halt
  }
}
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“D” is for diagonalization

List all Java programs.
This list exists because the set of all
Java programs is countable.

 

P0

P1

P2

P3

P4
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“D” is for diagonalization

List all Java programs.
This list exists because the set of all
Java programs is countable.

Let  stand for code(P).

 

⟨P⟩

⟨ ⟩P0 ⟨ ⟩P1 ⟨ ⟩P2 ⟨ ⟩P3 ⟨ ⟩P4 …
P0

P1

P2

P3

P4
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“D” is for diagonalization

List all Java programs.
This list exists because the set of all
Java programs is countable.

Let  stand for code(P).
 entry is 1 if the program  halts

on input  and 0 otherwise.

 

0 1 1 0 1

1 1 0 1 0

1 0 1 0 0

0 1 1 0 1

0 1 1 1 1

⟨P⟩
(P, x) P

x

⟨ ⟩P0 ⟨ ⟩P1 ⟨ ⟩P2 ⟨ ⟩P3 ⟨ ⟩P4 …
P0 …
P1 …
P2 …
P3 …
P4 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ …
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“D” is for diagonalization

List all Java programs.
This list exists because the set of all
Java programs is countable.

Let  stand for code(P).
 entry is 1 if the program  halts

on input  and 0 otherwise.
D behaves like the flipped diagonal

, and differs from
every  in the list.

 

0 1 1 0 1

1 1 0 1 0

1 0 1 0 0

0 1 1 0 1

0 1 1 1 1

⟨P⟩
(P, x) P

x

D(⟨P⟩) = ¬P(⟨P⟩)
P

⟨ ⟩P0 ⟨ ⟩P1 ⟨ ⟩P2 ⟨ ⟩P3 ⟨ ⟩P4 …
P0 …
P1 …
P2 …
P3 …
P4 …

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ …
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“D” is for diagonalization

List all Java programs.
This list exists because the set of all
Java programs is countable.

Let  stand for code(P).
 entry is 1 if the program  halts

on input  and 0 otherwise.
D behaves like the flipped diagonal

, and differs from
every  in the list.

But the list is complete.
So if D isn’t included, it cannot exist!

 

0 1 1 0 1

1 1 0 1 0

1 0 1 0 0

0 1 1 0 1

0 1 1 1 1

⟨P⟩
(P, x) P

x
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The halting problem isn’t the only hard problem

To show that a problem  is undecidable:
Prove that if there were a program deciding  then there would be a way
to build a program deciding the halting problem.

B
B
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The halting problem isn’t the only hard problem

To show that a problem  is undecidable:
Prove that if there were a program deciding  then there would be a way
to build a program deciding the halting problem.
That is, prove “  is decidable  halting problem is decidable”.

B
B

B →
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The halting problem isn’t the only hard problem

To show that a problem  is undecidable:
Prove that if there were a program deciding  then there would be a way
to build a program deciding the halting problem.
That is, prove “  is decidable  halting problem is decidable”.
By contrapositive, “halting problem is undecidable   is undecidable”.

B
B

B →
→ B
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The halting problem isn’t the only hard problem

To show that a problem  is undecidable:
Prove that if there were a program deciding  then there would be a way
to build a program deciding the halting problem.
That is, prove “  is decidable  halting problem is decidable”.
By contrapositive, “halting problem is undecidable   is undecidable”.
Therefore,  is undecidable.

Every non-trivial question about program behavior is undecidable.
Termination, equivalence checking, verification, synthesis, …

B
B

B →
→ B

B
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The halting problem isn’t the only hard problem

To show that a problem  is undecidable:
Prove that if there were a program deciding  then there would be a way
to build a program deciding the halting problem.
That is, prove “  is decidable  halting problem is decidable”.
By contrapositive, “halting problem is undecidable   is undecidable”.
Therefore,  is undecidable.

Every non-trivial question about program behavior is undecidable.
Termination, equivalence checking, verification, synthesis, …

But we can o"en decide these questions in practice!
They are undecidable for arbitrary programs and properties.
Yet decidable for many specific classes of programs and properties.
And when we allow “yes/no/don’t know” answers.

B
B

B →
→ B

B
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That’s all folks!
Propositional logic.
Boolean logic, circuits, and algebra.
Predicates, quantifiers and predicate logic.
Inference rules and formal proofs for propositional and predicate logic.
English proofs.
Set theory.
Modular arithmetic and prime numbers.
GCD, Euclid’s algorithm, modular inverse, and exponentiation.
Induction and strong induction.
Recursively defined functions and sets.
Structural induction.
Regular expressions.
Context-free grammars and languages.
Relations, composition, and reflexive-transitive closure.
DFAs, NFAs, and product construction for DFAs.
Finite state machines with output.
Minimization algorithm for finite state machines.
Conversion of regular expressions to NFAs.
Subset construction to convert NFAs to DFAs.
Equivalence of DFAs, NFAs, regular expressions.
Method to prove languages are not regular.
Cardinality, countability, and diagonalization.
Undecidability and the halting problem.

Go forth and
prove great
things!
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