CSE 311 Lecture 20: Regular Expressions

Emina Torlak and Kevin Zatloukal
Topics

Structural induction
 A brief review of Lecture 19.

Using structural induction
 Example proofs about recursively defined numbers, strings, and trees.

Regular expressions
 Definition, examples, applications.
Structural induction

A brief review of Lecture 19.
Structural induction proof template

1. Let \(P(x) \) be [definition of \(P(x) \)].
 We will show that \(P(x) \) is true for every \(x \in S \) by structural induction.

2. Base cases:
 [Proof of \(P(s_0), \ldots, P(s_m) \).]

3. Inductive hypothesis:
 Assume that \(P(y_0), \ldots, P(y_k) \) are true for some arbitrary \(y_0, \ldots, y_k \in S \).

4. Inductive step:
 We want to prove that \(P(y) \) is true.
 [Proof of \(P(y) \). The proof must invoke the structural inductive hypothesis.]

5. The result follows for all \(x \in S \) by structural induction.
Structural induction proof template

1. Let $P(x)$ be [definition of $P(x)$].

 We will show that $P(x)$ is true for every $x \in S$ by structural induction.

2. Base cases:

 [Proof of $P(s_0), \ldots, P(s_m)$.]

3. Inductive hypothesis:

 Assume that $P(y_0), \ldots, P(y_k)$ are true for some arbitrary $y_0, \ldots, y_k \in S$.

4. Inductive step:

 We want to prove that $P(y)$ is true.

 [Proof of $P(y)$. The proof must invoke the structural inductive hypothesis.]

5. The result follows for all $x \in S$ by structural induction.

Recursive definition of S

Basis step:
 $s_0 \in S, \ldots, s_m \in S$.

Recursive step:
 if $y_0, \ldots, y_k \in S$, then $y \in S$.

If the recursive step of S includes multiple rules for constructing new elements from existing elements, then

③ assume P for the existing elements in every rule, and
④ prove P for the new element in every rule.
Structural induction works just like ordinary induction

1. Let \(P(x) \) be [definition of \(P(x) \)].
 We will show that \(P(x) \) is true for every \(x \in \mathbb{N} \) by structural induction.

2. Base cases:
 [Proof of \(P(0) \).]

3. Inductive hypothesis:
 Assume that \(P(n) \) is true for some arbitrary \(n \in \mathbb{N} \).

4. Inductive step:
 We want to prove that \(P(n + 1) \) is true.
 [Proof of \(P(n + 1) \). The proof must invoke the structural inductive hypothesis.]

5. The result follows for all \(x \in \mathbb{N} \) by structural induction.

Recursive definition of \(\mathbb{N} \):
- Basis step: \(0 \in \mathbb{N} \).
- Recursive step:
 - if \(n \in \mathbb{N} \), then \(n + 1 \in \mathbb{N} \).

Ordinary induction is just structural induction applied to the recursively defined set of natural numbers!
Understanding structural induction

\[P(\bullet); \forall L, R \in S. (P(L) \land P(R)) \rightarrow P(\text{Tree}(\bullet, L, R)) \]

\[\therefore \forall x \in S. P(x) \]

How do we get \(P(\text{Tree}(\bullet, \text{Tree}(\bullet, \bullet, \bullet))) \) from \(P(\bullet) \) and
\(\forall L, R \in S. (P(L) \land P(R)) \rightarrow P(\text{Tree}(\bullet, L, R))? \)

1. First, we have \(\forall L, R \in S. (P(L) \land P(R)) \rightarrow P(\text{Tree}(\bullet, L, R)) \)
2. Next, we have \(P(\bullet) \).
3. Intro \(\land \) on 2 gives us \(P(\bullet) \land P(\bullet) \).
4. Elim \(\forall \) on 1 gives us \((P(\bullet) \land P(\bullet)) \rightarrow P(\text{Tree}(\bullet, \bullet, \bullet)) \).
5. Modus Ponens on 3 and 4 gives us \(P(\text{Tree}(\bullet, \bullet, \bullet)) \).
6. Intro \(\land \) on 2 and 5 gives us \(P(\bullet) \land P(\text{Tree}(\bullet, \bullet, \bullet)) \).
7. Elim \(\forall \) on 1 gives us
\((P(\bullet) \land P(\text{Tree}(\bullet, \bullet, \bullet)) \rightarrow P(\text{Tree}(\bullet, \text{Tree}(\bullet, \bullet, \bullet))) \).
8. Modus Ponens on 6 and 7 gives us \(P(\text{Tree}(\bullet, \text{Tree}(\bullet, \bullet, \bullet))) \).

\begin{align*}
P(\bullet) \\
P(\bullet) \land P(\bullet) \\
\Downarrow (P(\bullet) \land P(\bullet)) \rightarrow P(\text{Tree}(\bullet, \bullet, \bullet)) \\
P(\text{Tree}(\bullet, \bullet, \bullet)) \\
P(\bullet) \land P(\text{Tree}(\bullet, \bullet, \bullet)) \\
\Downarrow (P(\bullet) \land P(\text{Tree}(\bullet, \bullet, \bullet)) \rightarrow P(\text{Tree}(\bullet, \text{Tree}(\bullet, \bullet, \bullet))) \\
P(\text{Tree}(\bullet, \text{Tree}(\bullet, \bullet, \bullet)))
\end{align*}

Define \(S \) by
Basis: \(\bullet \in S. \)
Recursive:
if \(L, R \in S \), then \(\text{Tree}(\bullet, L, R) \in S \)
Using structural induction

Example proofs about recursively defined numbers, strings, and trees.
Prove that every $x \in S$ is divisible by 3

Define S by
Basis: $6 \in S$, $15 \in S$.
Recursive: if $x, y \in S$, then $x + y \in S$.
Prove that every $x \in S$ is divisible by 3

Let $P(x)$ be $3\mid x$.

We will show that $P(x)$ is true for every $x \in S$ by structural induction.

Define S by

Basis: $6 \in S$, $15 \in S$.

Recursive: if $x, y \in S$, then $x + y \in S$.
Prove that every $x \in S$ is divisible by 3

① Let $P(x)$ be $3|x$.
 We will show that $P(x)$ is true for every $x \in S$ by structural induction.

② Base cases ($x = 6, x = 15$):
 $3|6$ so $P(6)$ holds, and $3|15$ so $P(15)$ holds.

Define S by
 Basis: $6 \in S, 15 \in S$.
 Recursive: if $x, y \in S$, then $x + y \in S$.
Prove that every \(x \in S \) is divisible by 3

1. Let \(P(x) \) be \(3|x \).

 We will show that \(P(x) \) is true for every \(x \in S \) by structural induction.

2. Base cases (\(x = 6, x = 15 \)):

 \(3|6 \) so \(P(6) \) holds, and \(3|15 \) so \(P(15) \) holds.

3. Inductive hypothesis:

 Assume that \(P(x), P(y) \) are true for some arbitrary \(x, y \in S \).

Define \(S \) by

- **Basis:** \(6 \in S, 15 \in S \).
- **Recursive:** if \(x, y \in S \), then \(x + y \in S \).
Prove that every $x \in S$ is divisible by 3

1. Let $P(x)$ be $3|x$.
 We will show that $P(x)$ is true for every $x \in S$ by structural induction.

2. Base cases ($x = 6, x = 15$):
 $3|6$ so $P(6)$ holds, and $3|15$ so $P(15)$ holds.

3. Inductive hypothesis:
 Assume that $P(x), P(y)$ are true for some arbitrary $x, y \in S$.

4. Inductive step:
 We want to prove that $P(x + y)$ is true.

Define S by
Basis: $6 \in S, 15 \in S$.
Recursive: if $x, y \in S$, then $x + y \in S$.
Prove that every $x \in S$ is divisible by 3

1. Let $P(x)$ be $3|\!x$.
 We will show that $P(x)$ is true for every $x \in S$ by structural induction.

2. Base cases ($x = 6, x = 15$):
 3|6 so $P(6)$ holds, and 3|15 so $P(15)$ holds.

3. Inductive hypothesis:
 Assume that $P(x), P(y)$ are true for some arbitrary $x, y \in S$.

4. Inductive step:
 We want to prove that $P(x + y)$ is true.
 By the inductive hypothesis, 3|x and 3|y, so $x = 3i$ and $y = 3j$ for some $i, j \in \mathbb{Z}$.

Define S by
 Basis: $6 \in S, 15 \in S$.
 Recursive: if $x, y \in S$, then $x + y \in S$.

Prove that every \(x \in S \) is divisible by 3

1. Let \(P(x) \) be \(3|x \).
 We will show that \(P(x) \) is true for every \(x \in S \) by structural induction.

2. Base cases (\(x = 6, x = 15 \)):
 - \(3|6 \) so \(P(6) \) holds, and \(3|15 \) so \(P(15) \) holds.

3. Inductive hypothesis:
 Assume that \(P(x), P(y) \) are true for some arbitrary \(x, y \in S \).

4. Inductive step:
 We want to prove that \(P(x + y) \) is true.
 By the inductive hypothesis, \(3|x \) and \(3|y \), so \(x = 3i \) and \(y = 3j \) for some \(i, j \in \mathbb{Z} \). Therefore,
 \(x + y = 3i + 3j = 3(i + j) \) so \(3|(x + y) \).

Define \(S \) by
- Basis: \(6 \in S, 15 \in S \).
- Recursive: if \(x, y \in S \), then \(x + y \in S \).
Prove that every \(x \in S \) is divisible by 3

1. Let \(P(x) \) be \(3|\!x \).

 We will show that \(P(x) \) is true for every \(x \in S \) by structural induction.

2. Base cases (\(x = 6, x = 15 \)):

 \[3|6 \text{ so } P(6) \text{ holds, and } 3|15 \text{ so } P(15) \text{ holds.} \]

3. Inductive hypothesis:

 Assume that \(P(x), P(y) \) are true for some arbitrary \(x, y \in S \).

4. Inductive step:

 We want to prove that \(P(x + y) \) is true.

 By the inductive hypothesis, \(3|x \) and \(3|y \), so \(x = 3i \) and \(y = 3j \) for some \(i, j \in \mathbb{Z} \). Therefore,

 \[x + y = 3i + 3j = 3(i + j) \text{ so } 3|(x + y). \]

 Hence, \(P(x + y) \) is true.

Define \(S \) by

- **Basis:** \(6 \in S, 15 \in S. \)
- **Recursive:** if \(x, y \in S \), then \(x + y \in S. \)
Prove that every $x \in S$ is divisible by 3

1. Let $P(x)$ be $3|x$.

 We will show that $P(x)$ is true for every $x \in S$ by structural induction.

2. Base cases ($x = 6, x = 15$):

 $3|6$ so $P(6)$ holds, and $3|15$ so $P(15)$ holds.

3. Inductive hypothesis:

 Assume that $P(x), P(y)$ are true for some arbitrary $x, y \in S$.

4. Inductive step:

 We want to prove that $P(x + y)$ is true.

 By the inductive hypothesis, $3|x$ and $3|y$, so $x = 3i$ and $y = 3j$ for some $i, j \in \mathbb{Z}$. Therefore,

 $x + y = 3i + 3j = 3(i + j)$ so $3|(x + y)$. Hence,

 $P(x + y)$ is true.

5. The result follows for all $x \in S$ by structural induction.

Define S by

Basis: $6 \in S, 15 \in S$.

Recursive: if $x, y \in S$, then $x + y \in S$.

Prove $\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x, y \in \Sigma^*$

Define Σ^* by
Basis: $\varepsilon \in \Sigma^*$.
Recursive:
if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$

Length
$\text{len}(\varepsilon) = 0$
$\text{len}(wa) = \text{len}(w) + 1$

Concatenation
$x \cdot \varepsilon = x$
$x \cdot (wa) = (x \cdot w)a$
Prove $\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x, y \in \Sigma^*$

What object (x or y) to do structural induction on?

Define Σ^* by
Basis: $\varepsilon \in \Sigma^*$.
Recursive: if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$

Length
$\text{len}(\varepsilon) = 0$
$\text{len}(wa) = \text{len}(w) + 1$

Concatenation
$x \cdot \varepsilon = x$
$x \cdot (wa) = (x \cdot w)a$
Prove \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

1. Let \(P(y) \) be \(\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).
 We will show that \(P(y) \) is true for every \(y \in \Sigma^* \) by structural induction.

Define \(\Sigma^* \) by
- Basis: \(\epsilon \in \Sigma^* \).
- Recursive:
 if \(w \in \Sigma^* \) and \(a \in \Sigma \)
 then \(wa \in \Sigma^* \)

Length
- \(\text{len}(\epsilon) = 0 \)
- \(\text{len}(wa) = \text{len}(w) + 1 \)

Concatenation
- \(x \cdot \epsilon = x \)
- \(x \cdot (wa) = (x \cdot w)a \)
Prove \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

1. Let \(P(y) \) be \(\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).
 We will show that \(P(y) \) is true for every \(y \in \Sigma^* \) by structural induction.
2. Base case \((y = \varepsilon) \):
 Let \(x \) in \(\Sigma^* \) be arbitrary.

Define \(\Sigma^* \) by
- Basis: \(\varepsilon \in \Sigma^* \).
- Recursive:
 if \(w \in \Sigma^* \) and \(a \in \Sigma \),
 then \(wa \in \Sigma^* \).

Length
- \(\text{len}(\varepsilon) = 0 \)
- \(\text{len}(wa) = \text{len}(w) + 1 \)

Concatenation
- \(x \cdot \varepsilon = x \)
- \(x \cdot (wa) = (x \cdot w)a \)
Prove $\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x, y \in \Sigma^*$

1. Let $P(y)$ be $\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$. We will show that $P(y)$ is true for every $y \in \Sigma^*$ by structural induction.

2. Base case ($y = \varepsilon$): Let x in Σ^* be arbitrary. Then, $\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon)$ since $\text{len}(\varepsilon) = 0$. So $P(\varepsilon)$ is true.

Define Σ^* by
- Basis: $\varepsilon \in \Sigma^*$.
- Recursive: if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$

Length
- $\text{len}(\varepsilon) = 0$
- $\text{len}(wa) = \text{len}(w) + 1$

Concatenation
- $x \cdot \varepsilon = x$
- $x \cdot (wa) = (x \cdot w)a$
Prove \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

1. Let \(P(y) \) be \(\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \). We will show that \(P(y) \) is true for every \(y \in \Sigma^* \) by structural induction.

2. Base case \((y = \epsilon)\):
 Let \(x \) in \(\Sigma^* \) be arbitrary. Then, \(\text{len}(x \cdot \epsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\epsilon) \) since \(\text{len}(\epsilon) = 0 \). So \(P(\epsilon) \) is true.

3. Inductive hypothesis:
 Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

Define \(\Sigma^* \) by
- Basis: \(\epsilon \in \Sigma^* \).
- Recursive:
 - if \(w \in \Sigma^* \) and \(a \in \Sigma \), then \(wa \in \Sigma^* \).

Length
- \(\text{len}(\epsilon) = 0 \)
- \(\text{len}(wa) = \text{len}(w) + 1 \)

Concatenation
- \(x \cdot \epsilon = x \)
- \(x \cdot (wa) = (x \cdot w)a \)
Prove \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

1. Let \(P(y) \) be \(\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).
 We will show that \(P(y) \) is true for every \(y \in \Sigma^* \) by structural induction.

2. Base case (\(y = \varepsilon \)):
 Let \(x \) in \(\Sigma^* \) be arbitrary. Then, \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \)
 since \(\text{len}(\varepsilon) = 0 \). So \(P(\varepsilon) \) is true.

3. Inductive hypothesis:
 Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

4. Inductive step:
 We want to prove that \(P(wa) \) is true for every \(a \in \Sigma \).

Define \(\Sigma^* \) by
Basis: \(\varepsilon \in \Sigma^* \).
Recursive:
if \(w \in \Sigma^* \) and \(a \in \Sigma \), then \(wa \in \Sigma^* \)
Length
\(\text{len}(\varepsilon) = 0 \)
\(\text{len}(wa) = \text{len}(w) + 1 \)
Concatenation
\(x \cdot \varepsilon = x \)
\(x \cdot (wa) = (x \cdot w)a \)
Prove $\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x, y \in \Sigma^*$

1. Let $P(y)$ be $\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$.
 We will show that $P(y)$ is true for every $y \in \Sigma^*$ by structural induction.

2. Base case ($y = \varepsilon$):
 Let x in Σ^* be arbitrary. Then, $\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon)$ since $\text{len}(\varepsilon) = 0$. So $P(\varepsilon)$ is true.

3. Inductive hypothesis:
 Assume that $P(w)$ is true for some arbitrary $w \in \Sigma^*$.

4. Inductive step:
 We want to prove that $P(wa)$ is true for every $a \in \Sigma$.
 Let $a \in \Sigma$ and $x \in \Sigma^*$ be arbitrary. Then
Prove \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

1. Let \(P(y) \) be \(\forall x \in \Sigma^*. \, \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).
 We will show that \(P(y) \) is true for every \(y \in \Sigma^* \) by structural induction.

2. Base case (\(y = \varepsilon \)):
 Let \(x \) in \(\Sigma^* \) be arbitrary. Then, \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \)
 since \(\text{len}(\varepsilon) = 0 \). So \(P(\varepsilon) \) is true.

3. Inductive hypothesis:
 Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

4. Inductive step:
 We want to prove that \(P(wa) \) is true for every \(a \in \Sigma \).
 Let \(a \in \Sigma \) and \(x \in \Sigma^* \) be arbitrary. Then
 \[
 \text{len}(x \cdot wa) = \text{len}((x \cdot wa)) \quad \text{by defn of } \cdot \\
 = \text{len}(x \cdot w) + 1 \quad \text{by defn of len} \\
 = \text{len}(x) + \text{len}(w) + 1 \quad \text{by IH} \\
 = \text{len}(x) + \text{len}(wa) \quad \text{by defn of len}
 \]
Prove \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

1. Let \(P(y) \) be \(\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).
 We will show that \(P(y) \) is true for every \(y \in \Sigma^* \) by structural induction.

2. Base case \((y = \varepsilon)\):
 Let \(x \) in \(\Sigma^* \) be arbitrary. Then, \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \)
 since \(\text{len}(\varepsilon) = 0 \). So \(P(\varepsilon) \) is true.

3. Inductive hypothesis:
 Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

4. Inductive step:
 We want to prove that \(P(wa) \) is true for every \(a \in \Sigma \).
 Let \(a \in \Sigma \) and \(x \in \Sigma^* \) be arbitrary. Then
 \[
 \text{len}(x \cdot wa) = \text{len}((x \cdot wa)) \quad \text{by defn of } \cdot
 \]
 \[
 = \text{len}(x \cdot w) + 1 \quad \text{by defn of len}
 \]
 \[
 = \text{len}(x) + \text{len}(w) + 1 \quad \text{by IH}
 \]
 \[
 = \text{len}(x) + \text{len}(wa) \quad \text{by defn of len}
 \]
 So \(\text{len}(x \cdot wa) = \text{len}(x) + \text{len}(wa) \) for all \(x \in \Sigma^* \), and \(P(wa) \) is true.

Define \(\Sigma^* \) by
- Basis: \(\varepsilon \in \Sigma^* \).
- Recursive:
 if \(w \in \Sigma^* \) and \(a \in \Sigma \), then \(wa \in \Sigma^* \).

Length
- \(\text{len}(\varepsilon) = 0 \)
- \(\text{len}(wa) = \text{len}(w) + 1 \)

Concatenation
- \(x \cdot \varepsilon = x \)
- \(x \cdot (wa) = (x \cdot w)a \)
Prove \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

1. Let \(P(y) \) be \(\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \). We will show that \(P(y) \) is true for every \(y \in \Sigma^* \) by structural induction.

2. Base case (\(y = \varepsilon \)):
 - Let \(x \in \Sigma^* \) be arbitrary. Then, \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \) since \(\text{len}(\varepsilon) = 0 \). So \(P(\varepsilon) \) is true.

3. Inductive hypothesis:
 - Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

4. Inductive step:
 - We want to prove that \(P(wa) \) is true for every \(a \in \Sigma \).
 - Let \(a \in \Sigma \) and \(x \in \Sigma^* \) be arbitrary. Then
 \[
 \text{len}(x \cdot wa) = \text{len}((x \cdot w)a) \quad \text{by defn of } \cdot \\
 = \text{len}(x \cdot w) + 1 \quad \text{by defn of len} \\
 = \text{len}(x) + \text{len}(w) + 1 \quad \text{by IH} \\
 = \text{len}(x) + \text{len}(wa) \quad \text{by defn of len}
 \]
 - So \(\text{len}(x \cdot wa) = \text{len}(x) + \text{len}(wa) \) for all \(x \in \Sigma^* \), and \(P(wa) \) is true.

5. The result follows for all \(y \in \Sigma^* \) by structural induction.
Prove $|t| \leq 2^{[t]}+1 - 1$ for every rooted binary tree t

Define S by
Basis: $\bullet \in S$.
Recursive:
if $L, R \in S$, then
Tree(\bullet, L, R) $\in S$

Size
$|\bullet| = 1$
$|\text{Tree}(\bullet, L, R)| = 1 + |L| + |R|$

Height
$[\bullet] = 0$
$[\text{Tree}(\bullet, L, R)] = 1 + \max([L], [R])$
Prove $|t| \leq 2^{\lceil t \rceil + 1} - 1$ for every rooted binary tree t.

1. Let $P(t)$ be $|t| \leq 2^{\lceil t \rceil + 1} - 1$.

 We will show that $P(t)$ is true for every $t \in S$ by structural induction.

Define S by:

- **Basis:** $\bullet \in S$.
- **Recursive:** if $L, R \in S$, then $\text{Tree}(\bullet, L, R) \in S$.

Size

- $|\bullet| = 1$
- $|\text{Tree}(\bullet, L, R)| = 1 + |L| + |R|$

Height

- $[\bullet] = 0$
- $[\text{Tree}(\bullet, L, R)] = 1 + \max([L], [R])$
Prove \(|t| \leq 2^{|t|+1} - 1\) for every rooted binary tree \(t\)

1. Let \(P(t)\) be \(|t| \leq 2^{|t|+1} - 1\).
 We will show that \(P(t)\) is true for every \(t \in S\) by structural induction.

2. Base case (\(t = \bullet\)):
 \(|\bullet| = 1 = 2^1 - 1 = 2^{0+1} - 1 = 2^{|\bullet|+1} - 1\) so \(P(\bullet)\) is true.

Define \(S\) by
Basis: \(\bullet \in S\).
Recursive:
if \(L, R \in S\), then
Tree(\(\bullet, L, R\)) \(\in S\)

Size
\(|\bullet| = 1
|\text{Tree}(\bullet, L, R)| = 1 + |L| + |R|

Height
\(|\bullet| = 0
|\text{Tree}(\bullet, L, R)| = 1 + \max(|L|, |R|)\)
Prove $|t| \leq 2^{[t]+1} - 1$ for every rooted binary tree t

1. Let $P(t)$ be $|t| \leq 2^{[t]+1} - 1$.

 We will show that $P(t)$ is true for every $t \in S$ by structural induction.

2. Base case ($t = \cdot$):

 $|\cdot| = 1 = 2^1 - 1 = 2^{0+1} - 1 = 2^{[\cdot]+1} - 1$ so $P(\cdot)$ is true.

3. Inductive hypothesis:

 Assume that $P(L)$ and $P(R)$ are true for some arbitrary $L, R \in S$.

Define S by

Basis: $\cdot \in S$.
Recursive:

 if $L, R \in S$, then $\text{Tree}(\cdot, L, R) \in S$

Size

$|\cdot| = 1$

$|\text{Tree}(\cdot, L, R)| = 1 + |L| + |R|$

Height

$[\cdot] = 0$

$[\text{Tree}(\cdot, L, R)] = 1 + \max([L], [R])$
Prove $|t| \leq 2^{[t]+1} - 1$ for every rooted binary tree t

1. Let $P(t)$ be $|t| \leq 2^{[t]+1} - 1$.
 We will show that $P(t)$ is true for every $t \in S$ by structural induction.

2. Base case ($t = \bullet$):
 $|\bullet| = 1 = 2^{0+1} - 1 = 2^{[\bullet]+1} - 1$ so $P(\bullet)$ is true.

3. Inductive hypothesis:
 Assume that $P(L)$ and $P(R)$ are true for some arbitrary $L, R \in S$.

4. Inductive step:
 We want to prove that $P(\text{Tree}(\bullet, L, R))$ is true.

Define S by
Basis: $\bullet \in S$.
Recursive:
if $L, R \in S$, then $\text{Tree}(\bullet, L, R) \in S$

Size
$|\bullet| = 1$
$|\text{Tree}(\bullet, L, R)| = 1 + |L| + |R|$

Height
$[\bullet] = 0$
$[\text{Tree}(\bullet, L, R)] = 1 + \max([L], [R])$
Prove $|t| \leq 2^{\lceil t \rceil + 1} - 1$ for every rooted binary tree t

1. Let $P(t)$ be $|t| \leq 2^{\lceil t \rceil + 1} - 1$.
 We will show that $P(t)$ is true for every $t \in S$ by structural induction.

2. Base case ($t = \bullet$):
 $|\bullet| = 1 = 2^1 - 1 = 2^{0+1} - 1 = 2^{\lceil \bullet \rceil + 1} - 1$ so $P(\bullet)$ is true.

3. Inductive hypothesis:
 Assume that $P(L)$ and $P(R)$ are true for some arbitrary $L, R \in S$.

4. Inductive step:
 We want to prove that $P(\text{Tree}(\bullet, L, R))$ is true.

 $|\text{Tree}(\bullet, L, R)| = 1 + |L| + |R|$

 $\leq 1 + (2^{\lceil L \rceil + 1} - 1) + (2^{\lceil R \rceil + 1} - 1)$ by defn of $|$ by IH

 $\leq 2^{\lceil L \rceil + 1} + 2^{\lceil R \rceil + 1} - 1$ algebra

 $\leq 2(2^{\max(\lceil L \rceil, \lceil R \rceil) + 1}) - 1$ by defn of max

 $= 2(2^{\lceil \text{Tree}(\bullet, L, R) \rceil}) - 1$ by defn of $\lceil \rceil$

 $= 2^{\lceil \text{Tree}(\bullet, L, R) \rceil + 1} - 1$ which is the desired result.

Define S by

Basis: $\bullet \in S$.

Recursive:
if $L, R \in S$, then $\text{Tree}(\bullet, L, R) \in S$

Size
$|\bullet| = 1$

$|\text{Tree}(\bullet, L, R)| = 1 + |L| + |R|$

Height
$\lceil \bullet \rceil = 0$

$\lceil \text{Tree}(\bullet, L, R) \rceil = 1 + \max(\lceil L \rceil, \lceil R \rceil)$
Prove $|t| \leq 2^{|t|} + 1 - 1$ for every rooted binary tree t

1. Let $P(t)$ be $|t| \leq 2^{|t|} + 1 - 1$.
 We will show that $P(t)$ is true for every $t \in S$ by structural induction.

2. Base case ($t = \bullet$):
 $|\bullet| = 1 = 2^1 - 1 = 2^{0+1} - 1 = 2^{[\bullet]+1} - 1$ so $P(\bullet)$ is true.

3. Inductive hypothesis:
 Assume that $P(L)$ and $P(R)$ are true for some arbitrary $L, R \in S$.

4. Inductive step:
 We want to prove that $P(\text{Tree}(\bullet, L, R))$ is true.

 $|\text{Tree}(\bullet, L, R)| = 1 + |L| + |R|$ by defn of $|\ |
 \leq 1 + (2^{|L|+1} - 1) + (2^{|R|+1} - 1)$ by IH
 \leq 2^{|L|+1} + 2^{|R|+1} - 1 algebra
 \leq 2(2^{\max(|L|,|R|)+1}) - 1 by defn of max
 = 2(2^{|\text{Tree}(\bullet, L, R)|}) - 1 by defn of $|$
 = 2^{|\text{Tree}(\bullet, L, R)|+1} - 1 which is the desired result.

5. The result follows for all $t \in S$ by structural induction.
Regular expressions

Definition, examples, applications.
Sets of strings as languages

A language is a set of strings with specific syntax, e.g.:
 - Syntactically correct Java/C/C++ programs.
 - The set Σ^* of all strings over the alphabet Σ.
 - Palindromes over Σ.
 - Binary strings with no 1’s before 0’s.
Sets of strings as languages

A language is a set of strings with specific syntax, e.g.:
- Syntactically correct Java/C/C++ programs.
- The set Σ^* of all strings over the alphabet Σ.
- Palindromes over Σ.
- Binary strings with no 1’s before 0’s.

Regular expressions let us specify regular languages, e.g.:
- All binary strings.
- The strings $\{0000, 0010, 1000, 1010\}$.
- All strings that contain the string “CSE311”.
Regular expressions over Σ: syntax

Basis step:
- \emptyset, ε are regular expressions.
- a is a regular expression for any $a \in \Sigma$.

Recursive step:
- If A and B are regular expressions, then so are AB, $A \cup B$, and A^*.
Regular expressions over Σ: syntax

Basis step:
- \emptyset, ε are regular expressions.
- a is a regular expression for any $a \in \Sigma$.

Recursive step:
- If A and B are regular expressions, then so are AB, $A \cup B$, and A^*.

Examples: regular expressions of $\Sigma = \{0, 1\}$

Basis: \emptyset, ε, 0, 1.

Recursive: 01011, 0^*1^*, $(0 \cup 1)0(0 \cup 1)0$, etc.
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ.
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ. \emptyset represents the set with no strings.
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ.

- \emptyset represents the set with no strings.
- ε represents the set $\{\varepsilon\}$.
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ.

- \emptyset represents the set with no strings.
- ϵ represents the set $\{\epsilon\}$.
- a represents the set $\{a\}$.
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ.

- \emptyset represents the set with no strings.
- ϵ represents the set $\{\epsilon\}$.
- a represents the set $\{a\}$.
- AB represents the concatenation of the sets represented by A and B: $\{a \cdot b \mid a \in A, b \in B\}$.

Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ.

- \emptyset represents the set with no strings.
- ε represents the set $\{\varepsilon\}$.
- a represents the set $\{a\}$.
- AB represents the concatenation of the sets represented by A and B: $\{a \cdot b \mid a \in A, b \in B\}$.
- $A \cup B$ represents the union of the sets represented by A and B: $A \cup B$.
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ.

- \emptyset represents the set with no strings.
- ε represents the set $\{\varepsilon\}$.
- a represents the set $\{a\}$.

AB represents the concatenation of the sets represented by A and B:
$$\{a \cdot b \mid a \in A, b \in B\}.$$

$A \cup B$ represents the union of the sets represented by A and B:
$$A \cup B.$$

A^* represents the concatenation of the set represented by A with itself zero or more times:
$$A^* = \{\varepsilon\} \cup A \cup AA \cup AAA \cup AAAA \cup \ldots$$
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ.

- \emptyset represents the set with no strings.
- ϵ represents the set $\{\epsilon\}$.
- a represents the set $\{a\}$.
- AB represents the concatenation of the sets represented by A and B: $\{a \cdot b \mid a \in A, b \in B\}$.
- $A \cup B$ represents the union of the sets represented by A and B: $A \cup B$.
- A^* represents the concatenation of the set represented by A with itself zero or more times: $A^* = \{\epsilon\} \cup A \cup AA \cup AAA \cup AAAAA \cup \ldots$

This just defines a recursive function definition for computing the meaning of a regular expression:

- $\text{language}(\emptyset) = \{\}$
- $\text{language}(\epsilon) = \{\epsilon\}$
- $\text{language}(AB) = \{a \cdot b \mid a \in \text{language}(A), b \in \text{language}(B)\}$
- $\text{language}(A \cup B) = \text{language}(A) \cup \text{language}(B)$
- $\text{language}(A^*) = \{\epsilon\} \cup \text{language}(A) \cup \text{language}(AA) \cup \ldots$
Examples of regular expressions

001*

0*1*

(0 ∪ 1)0(0 ∪ 1)0

(0*1*)*

(0 ∪ 1)*0110(0 ∪ 1)*
Examples of regular expressions

001*
Binary strings with “00” followed by any number of 1s.

0*1*

(0 ∪ 1)0(0 ∪ 1)0

(0*1*)*

(0 ∪ 1)*0110(0 ∪ 1)*
Examples of regular expressions

001*
Binary strings with “00” followed by any number of 1s.

0*1*
Binary strings with any number of 0s followed by any number of 1s.

(0 ∪ 1)0(0 ∪ 1)0

(0*1*)*

(0 ∪ 1)*0110(0 ∪ 1)*
Examples of regular expressions

001*
Binary strings with “00” followed by any number of 1s.

0*1*
Binary strings with any number of 0s followed by any number of 1s.

(0 ∪ 1)0(0 ∪ 1)0
{0000, 0010, 1000, 1010}

(0*1*)*

(0 ∪ 1)*0110(0 ∪ 1)*
Examples of regular expressions

001*

Binary strings with “00” followed by any number of 1s.

0*1*

Binary strings with any number of 0s followed by any number of 1s.

(0 ∪ 1)0(0 ∪ 1)0

{0000, 0010, 1000, 1010}

(0*1*)*

All binary strings.

(0 ∪ 1)*0110(0 ∪ 1)*
Examples of regular expressions

001*

Binary strings with “00” followed by any number of 1s.

0*1*

Binary strings with any number of 0s followed by any number of 1s.

(0 ⋃ 1)0(0 ⋃ 1)0

{0000, 0010, 1000, 1010}

(0*1*)*

All binary strings.

(0 ⋃ 1)*0110(0 ⋃ 1)*

Binary strings that contain “0110”.
Regular expressions in practice

Used to define the *tokens* in a programming language.
Legal variable names, keywords, etc.

Used in *grep*, a Unix program that searches for patterns in a set of files.
For example, `grep "311" *.md` searches for the string “311” in all Markdown files in the current directory.

Used in programs to process strings.
These slides are generated with the help of regular expressions :)

Summary

Use structural induction to prove properties of recursive structures.
Follows from ordinary induction but is easier to use.
As powerful as ordinary induction.

To prove $\forall x \in S. P(x)$ using structural induction:
Show that P holds for the elements in the basis step of S.
Assume P for every existing element of S named in the recursive step.
Prove P for every new element of S created in the recursive step.

A regular expression defines a set of strings over an alphabet Σ.
\emptyset, ε, and $a \in \Sigma$ are regular expressions.
If A and B are regular expressions, then so are (AB), $(A \cup B)$, A^*. Many practical applications, from grep to everyday programming.