CSE 311 Lecture 20: Regular Expressions

Emina Torlak and Kevin Zatloukal
Topics

Structural induction
 A brief review of Lecture 19.

Using structural induction
 Example proofs about recursively defined numbers, strings, and trees.

Regular expressions
 Definition, examples, applications.
Structural induction

A brief review of Lecture 19.
Structural induction proof template

1. Let $P(x)$ be [definition of $P(x)$].
 We will show that $P(x)$ is true for every $x \in S$ by structural induction.

2. Base cases:
 [Proof of $P(s_0), \ldots, P(s_m)$.]

3. Inductive hypothesis:
 Assume that $P(y_0), \ldots, P(y_k)$ are true for some arbitrary $y_0, \ldots, y_k \in S$.

4. Inductive step:
 We want to prove that $P(y)$ is true.
 [Proof of $P(y)$. The proof must invoke the structural inductive hypothesis.]

5. The result follows for all $x \in S$ by structural induction.

Recursive definition of S
Basis step:
$s_0 \in S, \ldots, s_m \in S$.
Recursive step:
if $y_0, \ldots, y_k \in S$, then $y \in S$.
Structural induction proof template

1. Let $P(x)$ be [definition of $P(x)$].
 We will show that $P(x)$ is true for every $x \in S$ by structural induction.
2. Base cases:
 [Proof of $P(s_0), \ldots, P(s_m)$.]
3. Inductive hypothesis:
 Assume that $P(y_0), \ldots, P(y_k)$ are true for some arbitrary $y_0, \ldots, y_k \in S$.
4. Inductive step:
 We want to prove that $P(y)$ is true.
 [Proof of $P(y)$. The proof must invoke the structural inductive hypothesis.]
5. The result follows for all $x \in S$ by structural induction.

Recursive definition of S

Basis step:
$s_0 \in S, \ldots, s_m \in S$.

Recursive step:
if $y_0, \ldots, y_k \in S$, then $y \in S$.

If the recursive step of S includes multiple rules for constructing new elements from existing elements, then

3. assume P for the existing elements in every rule, and
4. prove P for the new element in every rule.
Structural induction works just like ordinary induction

1 Let $P(x)$ be [definition of $P(x)$].
 We will show that $P(x)$ is true for every $x \in \mathbb{N}$ by structural induction.

2 Base cases:
 [Proof of $P(0)$.]

3 Inductive hypothesis:
 Assume that $P(n)$ is true for some arbitrary $n \in \mathbb{N}$.

4 Inductive step:
 We want to prove that $P(n + 1)$ is true.
 [Proof of $P(n + 1)$. The proof must invoke the structural inductive hypothesis.]

5 The result follows for all $x \in \mathbb{N}$ by structural induction.

Recursive definition of \mathbb{N}
Basis step: $0 \in \mathbb{N}$.
Recursive step:
if $n \in \mathbb{N}$, then $n + 1 \in \mathbb{N}$.

Ordinary induction is just structural induction applied to the recursively defined set of natural numbers!
Understanding structural induction

\[P(\bullet); \forall L, R \in S. (P(L) \land P(R)) \rightarrow P(\text{Tree}(\bullet, L, R)) \]
\[\therefore \forall x \in S. P(x) \]

How do we get \(P(\text{Tree}(\bullet, \text{Tree}(\bullet, \bullet, \bullet))) \) from \(P(\bullet) \) and \(\forall L, R \in S. (P(L) \land P(R)) \rightarrow P(\text{Tree}(\bullet, L, R)) \)?

1. First, we have \(\forall L, R \in S. (P(L) \land P(R)) \rightarrow P(\text{Tree}(\bullet, L, R)) \)
2. Next, we have \(P(\bullet) \).
3. Intro \(\land \) on 2 gives us \(P(\bullet) \land P(\bullet) \).
4. Elim \(\forall \) on 1 gives us \((P(\bullet) \land P(\bullet)) \rightarrow P(\text{Tree}(\bullet, \bullet, \bullet)) \).
5. Modus Ponens on 3 and 4 gives us \(P(\text{Tree}(\bullet, \bullet, \bullet)) \).
6. Intro \(\land \) on 2 and 5 gives us \(P(\bullet) \land P(\text{Tree}(\bullet, \bullet, \bullet)) \).
7. Elim \(\forall \) on 1 gives us
 \[(P(\bullet) \land P(\text{Tree}(\bullet, \bullet, \bullet)) \rightarrow P(\text{Tree}(\bullet, \text{Tree}(\bullet, \bullet, \bullet)))) \]
8. Modus Ponens on 6 and 7 gives us \(P(\text{Tree}(\bullet, \text{Tree}(\bullet, \bullet, \bullet))) \).
Using structural induction

Example proofs about recursively defined numbers, strings, and trees.
Prove that every $x \in S$ is divisible by 3

Define S by

- **Basis:** $6 \in S$, $15 \in S$.
- **Recursive:** if $x, y \in S$, then $x + y \in S$.
Prove that every \(x \in S \) is divisible by 3

1. Let \(P(x) \) be \(3\mid x \).
 We will show that \(P(x) \) is true for every \(x \in S \) by structural induction.

Define \(S \) by
 - Basis: \(6 \in S, 15 \in S \).
 - Recursive: if \(x, y \in S \), then \(x + y \in S \).
Prove that every $x \in S$ is divisible by 3

1. Let $P(x)$ be $3|x$.
 We will show that $P(x)$ is true for every $x \in S$ by structural induction.
2. Base cases ($x = 6, x = 15$):
 $3|6$ so $P(6)$ holds, and $3|15$ so $P(15)$ holds.

Define S by
 Basis: $6 \in S, 15 \in S$.
 Recursive: if $x, y \in S$, then $x + y \in S$.
Prove that every $x \in S$ is divisible by 3

1. Let $P(x)$ be $3|x$.
 We will show that $P(x)$ is true for every $x \in S$ by structural induction.

2. **Base cases ($x = 6, x = 15$):**
 - $3|6$ so $P(6)$ holds, and $3|15$ so $P(15)$ holds.

3. **Inductive hypothesis:**
 Assume that $P(x), P(y)$ are true for some arbitrary $x, y \in S$.

Define S by

- **Basis:** $6 \in S, 15 \in S$.
- **Recursive:** if $x, y \in S$, then $x + y \in S$.
Prove that every \(x \in S \) is divisible by 3

1. Let \(P(x) \) be \(3| x \).
 We will show that \(P(x) \) is true for every \(x \in S \) by structural induction.

2. Base cases (\(x = 6, x = 15 \)):
 \(3|6 \) so \(P(6) \) holds, and \(3|15 \) so \(P(15) \) holds.

3. Inductive hypothesis:
 Assume that \(P(x), P(y) \) are true for some arbitrary \(x, y \in S \).

4. Inductive step:
 We want to prove that \(P(x + y) \) is true.

Define \(S \) by
Basis: \(6 \in S, 15 \in S \).
Recursive: if \(x, y \in S \), then \(x + y \in S \).
Prove that every $x \in S$ is divisible by 3

① Let $P(x)$ be $3|x$.
 We will show that $P(x)$ is true for every $x \in S$ by structural induction.

② Base cases ($x = 6, x = 15$):
 $3|6$ so $P(6)$ holds, and $3|15$ so $P(15)$ holds.

③ Inductive hypothesis:
 Assume that $P(x), P(y)$ are true for some arbitrary $x, y \in S$.

④ Inductive step:
 We want to prove that $P(x + y)$ is true.
 By the inductive hypothesis, $3|x$ and $3|y$, so $x = 3i$ and $y = 3j$ for some $i, j \in \mathbb{Z}$.

Define S by
 Basis: $6 \in S, 15 \in S$.
 Recursive: if $x, y \in S$, then $x + y \in S$.
Prove that every \(x \in S \) is divisible by 3

1. Let \(P(x) \) be \(3|x \).
 We will show that \(P(x) \) is true for every \(x \in S \) by structural induction.

2. Base cases (\(x = 6, x = 15 \)):
 \(3|6 \) so \(P(6) \) holds, and \(3|15 \) so \(P(15) \) holds.

3. Inductive hypothesis:
 Assume that \(P(x), P(y) \) are true for some arbitrary \(x, y \in S \).

4. Inductive step:
 We want to prove that \(P(x + y) \) is true.
 By the inductive hypothesis, \(3|x \) and \(3|y \), so \(x = 3i \) and \(y = 3j \) for some \(i, j \in \mathbb{Z} \). Therefore,
 \(x + y = 3i + 3j = 3(i + j) \) so \(3|(x + y) \).

Define \(S \) by
 Basis: \(6 \in S, 15 \in S \).
 Recursive: if \(x, y \in S \), then \(x + y \in S \).
Prove that every \(x \in S \) is divisible by 3

1. Let \(P(x) \) be \(3|x \).
 We will show that \(P(x) \) is true for every \(x \in S \) by structural induction.

2. Base cases \((x = 6, x = 15)\):
 \(3|6 \) so \(P(6) \) holds, and \(3|15 \) so \(P(15) \) holds.

3. Inductive hypothesis:
 Assume that \(P(x), P(y) \) are true for some arbitrary \(x, y \in S \).

4. Inductive step:
 We want to prove that \(P(x + y) \) is true.
 By the inductive hypothesis, \(3|x \) and \(3|y \), so \(x = 3i \) and \(y = 3j \) for some \(i, j \in \mathbb{Z} \). Therefore,
 \(x + y = 3i + 3j = 3(i + j) \) so \(3|(x + y) \). Hence, \(P(x + y) \) is true.

Define \(S \) by
 Basis: \(6 \in S, 15 \in S \).
 Recursive: if \(x, y \in S \), then \(x + y \in S \).
Prove that every \(x \in S \) is divisible by 3

1. Let \(P(x) \) be \(3|x \).
 We will show that \(P(x) \) is true for every \(x \in S \) by structural induction.

2. Base cases (\(x = 6, x = 15 \)):
 \(3|6 \) so \(P(6) \) holds, and \(3|15 \) so \(P(15) \) holds.

3. Inductive hypothesis:
 Assume that \(P(x), P(y) \) are true for some arbitrary \(x, y \in S \).

4. Inductive step:
 We want to prove that \(P(x + y) \) is true.
 By the inductive hypothesis, \(3|x \) and \(3|y \), so \(x = 3i \) and \(y = 3j \) for some \(i, j \in \mathbb{Z} \). Therefore,
 \(x + y = 3i + 3j = 3(i + j) \) so \(3|(x + y) \). Hence,
 \(P(x + y) \) is true.

5. The result follows for all \(x \in S \) by structural induction.

Define \(S \) by
 Basis: \(6 \in S, 15 \in S \).
 Recursive: if \(x, y \in S \), then \(x + y \in S \).
Prove \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

Define \(\Sigma^* \) by

Basis: \(\varepsilon \in \Sigma^* \).

Recursive:
if \(w \in \Sigma^* \) and \(a \in \Sigma \),
then \(wa \in \Sigma^* \)

Length
\(\text{len}(\varepsilon) = 0 \)
\(\text{len}(wa) = \text{len}(w) + 1 \)

Concatenation
\(x \cdot \varepsilon = x \)
\(x \cdot (wa) = (x \cdot w)a \)
Prove \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)\) for all \(x, y \in \Sigma^*\)

What object (\(x\) or \(y\)) to do structural induction on?

Define \(\Sigma^*\) by

- **Basis**: \(\epsilon \in \Sigma^*\).
- **Recursive**: if \(w \in \Sigma^*\) and \(a \in \Sigma\), then \(wa \in \Sigma^*\)

Length
- \(\text{len}(\epsilon) = 0\)
- \(\text{len}(wa) = \text{len}(w) + 1\)

Concatenation
- \(x \cdot \epsilon = x\)
- \(x \cdot (wa) = (x \cdot w)a\)
Prove \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

1. Let \(P(y) \) be \(\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).
 We will show that \(P(y) \) is true for every \(y \in \Sigma^* \) by structural induction.

Define \(\Sigma^* \) by
- **Basis**: \(\varepsilon \in \Sigma^* \).
- **Recursive**: if \(w \in \Sigma^* \) and \(a \in \Sigma \), then \(wa \in \Sigma^* \)

Length
- \(\text{len}(\varepsilon) = 0 \)
- \(\text{len}(wa) = \text{len}(w) + 1 \)

Concatenation
- \(x \cdot \varepsilon = x \)
- \(x \cdot (wa) = (x \cdot w)a \)
Prove $\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x, y \in \Sigma^*$

1. Let $P(y)$ be $\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$. We will show that $P(y)$ is true for every $y \in \Sigma^*$ by structural induction.

2. Base case ($y = \varepsilon$):
 Let x in Σ^* be arbitrary.

Define Σ^* by
- Basis: $\varepsilon \in \Sigma^*$.
- Recursive: if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$

Length
- $\text{len}(\varepsilon) = 0$
- $\text{len}(wa) = \text{len}(w) + 1$

Concatenation
- $x \cdot \varepsilon = x$
- $x \cdot (wa) = (x \cdot w)a$
Prove $\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x, y \in \Sigma^*$

1. Let $P(y)$ be $\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$.
 We will show that $P(y)$ is true for every $y \in \Sigma^*$ by structural induction.

2. **Base case ($y = \varepsilon$):**
 Let x in Σ^* be arbitrary. Then, $\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon)$ since $\text{len}(\varepsilon) = 0$. So $P(\varepsilon)$ is true.

Define Σ^* by
- **Basis:** $\varepsilon \in \Sigma^*$.
- **Recursive:** if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$

Length
- $\text{len}(\varepsilon) = 0$
- $\text{len}(wa) = \text{len}(w) + 1$

Concatenation
- $x \cdot \varepsilon = x$
- $x \cdot (wa) = (x \cdot w)a$
Prove \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

1. Let \(P(y) \) be \(\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).
 We will show that \(P(y) \) is true for every \(y \in \Sigma^* \) by structural induction.

2. Base case \((y = \varepsilon) \):
 Let \(x \) in \(\Sigma^* \) be arbitrary. Then, \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \)
 since \(\text{len}(\varepsilon) = 0 \). So \(P(\varepsilon) \) is true.

3. Inductive hypothesis:
 Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

Define \(\Sigma^* \) by
 Basis: \(\varepsilon \in \Sigma^* \).
 Recursive:
 if \(w \in \Sigma^* \) and \(a \in \Sigma \),
 then \(wa \in \Sigma^* \).

Length
 \(\text{len}(\varepsilon) = 0 \)
 \(\text{len}(wa) = \text{len}(w) + 1 \)

Concatenation
 \(x \cdot \varepsilon = x \)
 \(x \cdot (wa) = (x \cdot w)a \)
Prove $\operatorname{len}(x \cdot y) = \operatorname{len}(x) + \operatorname{len}(y)$ for all $x, y \in \Sigma^*$

1. Let $P(y)$ be $\forall x \in \Sigma^*. \operatorname{len}(x \cdot y) = \operatorname{len}(x) + \operatorname{len}(y)$.
 We will show that $P(y)$ is true for every $y \in \Sigma^*$ by structural induction.

2. Base case ($y = \varepsilon$):
 Let x in Σ^* be arbitrary. Then, $\operatorname{len}(x \cdot \varepsilon) = \operatorname{len}(x) = \operatorname{len}(x) + \operatorname{len}(\varepsilon)$
 since $\operatorname{len}(\varepsilon) = 0$. So $P(\varepsilon)$ is true.

3. Inductive hypothesis:
 Assume that $P(w)$ is true for some arbitrary $w \in \Sigma^*$.

4. Inductive step:
 We want to prove that $P(wa)$ is true for every $a \in \Sigma$.

Define Σ^* by
Basis: $\varepsilon \in \Sigma^*$.
Recursive:
if $w \in \Sigma^*$ and $a \in \Sigma$,
then $wa \in \Sigma^*$

Length
$\operatorname{len}(\varepsilon) = 0$
$\operatorname{len}(wa) = \operatorname{len}(w) + 1$

Concatenation
$x \cdot \varepsilon = x$
$x \cdot (wa) = (x \cdot w)a$
Prove $\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$ for all $x, y \in \Sigma^*$

1. Let $P(y)$ be $\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)$. We will show that $P(y)$ is true for every $y \in \Sigma^*$ by structural induction.

2. Base case ($y = \varepsilon$):
 Let x in Σ^* be arbitrary. Then, $\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon)$ since $\text{len}(\varepsilon) = 0$. So $P(\varepsilon)$ is true.

3. Inductive hypothesis:
 Assume that $P(w)$ is true for some arbitrary $w \in \Sigma^*$.

4. Inductive step:
 We want to prove that $P(wa)$ is true for every $a \in \Sigma$.
 Let $a \in \Sigma$ and $x \in \Sigma^*$ be arbitrary. Then

Define Σ^* by

Basis: $\varepsilon \in \Sigma^*$.
Recursive:
if $w \in \Sigma^*$ and $a \in \Sigma$, then $wa \in \Sigma^*$

Length
$\text{len}(\varepsilon) = 0$
$\text{len}(wa) = \text{len}(w) + 1$

Concatenation
$x \cdot \varepsilon = x$
$x \cdot (wa) = (x \cdot w)a$
Prove \(\text{len}(x \bullet y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

1. Let \(P(y) \) be \(\forall x \in \Sigma^*. \text{len}(x \bullet y) = \text{len}(x) + \text{len}(y) \).
 We will show that \(P(y) \) is true for every \(y \in \Sigma^* \) by structural induction.

2. Base case \((y = \varepsilon) \):
 Let \(x \) in \(\Sigma^* \) be arbitrary. Then, \(\text{len}(x \bullet \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \) since \(\text{len}(\varepsilon) = 0 \). So \(P(\varepsilon) \) is true.

3. Inductive hypothesis:
 Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

4. Inductive step:
 We want to prove that \(P(wa) \) is true for every \(a \in \Sigma \).
 Let \(a \in \Sigma \) and \(x \in \Sigma^* \) be arbitrary. Then
 \[
 \text{len}(x \bullet wa) = \text{len}((x \bullet wa) \bullet a)
 \]
 \[
 = \text{len}(x \bullet w) + 1 \quad \text{by defn of } \bullet
 \]
 \[
 = \text{len}(x) + \text{len}(w) + 1 \quad \text{by defn of len}
 \]
 \[
 = \text{len}(x) + \text{len}(wa) \quad \text{by IH}
 \]
 \[
 = \text{len}(x) + \text{len}(wa) \quad \text{by defn of len}
 \]

Define \(\Sigma^* \) by
- Basis: \(\varepsilon \in \Sigma^* \).
- Recursive:
 - if \(w \in \Sigma^* \) and \(a \in \Sigma \), then \(wa \in \Sigma^* \)

Length
\[
\text{len}(\varepsilon) = 0
\]
\[
\text{len}(wa) = \text{len}(w) + 1
\]

Concatenation
\[
x \bullet \varepsilon = x
\]
\[
x \bullet (wa) = (x \bullet w)a
\]
Prove \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

1. Let \(P(y) \) be \(\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).
 We will show that \(P(y) \) is true for every \(y \in \Sigma^* \) by structural induction.

2. Base case \((y = \varepsilon) \):
 Let \(x \) in \(\Sigma^* \) be arbitrary. Then, \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \)
 since \(\text{len}(\varepsilon) = 0 \). So \(P(\varepsilon) \) is true.

3. Inductive hypothesis:
 Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

4. Inductive step:
 We want to prove that \(P(wa) \) is true for every \(a \in \Sigma \).
 Let \(a \in \Sigma \) and \(x \in \Sigma^* \) be arbitrary. Then
 \[
 \text{len}(x \cdot wa) = \text{len}((x \cdot wa)) \quad \text{by defn of } \cdot \\
 = \text{len}(x \cdot w) + 1 \quad \text{by defn of } \text{len} \\
 = \text{len}(x) + \text{len}(w) + 1 \quad \text{by IH} \\
 = \text{len}(x) + \text{len}(wa) \quad \text{by defn of } \text{len} \\
 \]
 so \(\text{len}(x \cdot wa) = \text{len}(x) + \text{len}(wa) \) for all \(x \in \Sigma^* \), and \(P(wa) \) is true.
Prove \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \) for all \(x, y \in \Sigma^* \)

1. Let \(P(y) \) be \(\forall x \in \Sigma^*. \text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).
 We will show that \(P(y) \) is true for every \(y \in \Sigma^* \) by structural induction.

2. **Base case** (\(y = \epsilon \)):
 Let \(x \) in \(\Sigma^* \) be arbitrary. Then, \(\text{len}(x \cdot \epsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\epsilon) \)
 since \(\text{len}(\epsilon) = 0 \). So \(P(\epsilon) \) is true.

3. **Inductive hypothesis**:
 Assume that \(P(w) \) is true for some arbitrary \(w \in \Sigma^* \).

4. **Inductive step**:
 We want to prove that \(P(wa) \) is true for every \(a \in \Sigma \).
 Let \(a \in \Sigma \) and \(x \in \Sigma^* \) be arbitrary. Then
 \[
 \text{len}(x \cdot wa) = \text{len}((x \cdot wa)) \quad \text{by defn of } \cdot \\
 = \text{len}(x \cdot w) + 1 \quad \text{by defn of len} \\
 = \text{len}(x) + \text{len}(w) + 1 \quad \text{by IH} \\
 = \text{len}(x) + \text{len}(wa) \quad \text{by defn of len}
 \]
 So \(\text{len}(x \cdot wa) = \text{len}(x) + \text{len}(wa) \) for all \(x \in \Sigma^* \), and \(P(wa) \) is true.

5. The result follows for all \(y \in \Sigma^* \) by structural induction.
Prove $|t| \leq 2^{|t|} + 1 - 1$ for every rooted binary tree t

Define S by

Basis: $\bullet \in S$.

Recursive:
if $L, R \in S$, then
$\text{Tree}(\bullet, L, R) \in S$

Size
$|\bullet| = 1$
$|\text{Tree}(\bullet, L, R)| = 1 + |L| + |R|

Height
$|\bullet| = 0$
$|\text{Tree}(\bullet, L, R)| = 1 + \max(|L|, |R|)$
Prove $|t| \leq 2^{|t|+1} - 1$ for every rooted binary tree t

1. Let $P(t)$ be $|t| \leq 2^{|t|+1} - 1$.

 We will show that $P(t)$ is true for every $t \in S$ by structural induction.

Define S by

Basis: $\bullet \in S$.

Recursive:

- if $L, R \in S$, then $\text{Tree}(\bullet, L, R) \in S$

Size

$|\bullet| = 1$

$|\text{Tree}(\bullet, L, R)| = 1 + |L| + |R|$

Height

$[\bullet] = 0$

$[\text{Tree}(\bullet, L, R)] = 1 + \max([L], [R])$
Prove $|t| \leq 2^{[t]+1} - 1$ for every rooted binary tree t

1. Let $P(t)$ be $|t| \leq 2^{[t]+1} - 1$.

 We will show that $P(t)$ is true for every $t \in S$ by structural induction.

2. Base case ($t = \bullet$):

 $|\bullet| = 1 = 2^1 - 1 = 2^{0+1} - 1 = 2^{[\bullet]+1} - 1$ so $P(\bullet)$ is true.

Define S by

Basis: $\bullet \in S$.
Recursive: if $L, R \in S$, then $\text{Tree}(\bullet, L, R) \in S$

Size

$|\bullet| = 1$
$|\text{Tree}(\bullet, L, R)| = 1 + |L| + |R|$

Height

$[\bullet] = 0$
$[[\text{Tree}(\bullet, L, R)] = 1 + \max([L], [R])$
Prove \(|t| \leq 2^{|t|+1} - 1 \) for every rooted binary tree \(t \)

1. Let \(P(t) \) be \(|t| \leq 2^{|t|+1} - 1 \).
 We will show that \(P(t) \) is true for every \(t \in S \) by structural induction.

2. Base case (\(t = \cdot \)):
 \[|\cdot| = 1 = 2^1 - 1 = 2^{0+1} - 1 = 2^{\lfloor \cdot \rfloor+1} - 1 \] so \(P(\cdot) \) is true.

3. Inductive hypothesis:
 Assume that \(P(L) \) and \(P(R) \) are true for some arbitrary \(L, R \in S \).

Define \(S \) by

- Basis: \(\cdot \in S \).
- Recursive:
 - if \(L, R \in S \), then \(\text{Tree}(\cdot, L, R) \in S \).

Size

\[|\cdot| = 1 \]
\[|\text{Tree}(\cdot, L, R)| = 1 + |L| + |R| \]

Height

\[|\cdot| = 0 \]
\[|\text{Tree}(\cdot, L, R)| = 1 + \max(|L|, |R|) \]
Prove $|t| \leq 2^{[t]+1} - 1$ for every rooted binary tree t

1. Let $P(t)$ be $|t| \leq 2^{[t]+1} - 1$.
 We will show that $P(t)$ is true for every $t \in S$ by structural induction.

2. Base case ($t = \bullet$):

 $|\bullet| = 1 = 2^1 - 1 = 2^{0+1} - 1 = 2^{[\bullet]+1} - 1$ so $P(\bullet)$ is true.

3. Inductive hypothesis:
 Assume that $P(L)$ and $P(R)$ are true for some arbitrary $L, R \in S$.

4. Inductive step:
 We want to prove that $P(\text{Tree}(\bullet, L, R))$ is true.
Prove $|t| \leq 2^{[t]+1} - 1$ for every rooted binary tree t

1. Let $P(t)$ be $|t| \leq 2^{[t]+1} - 1$.
 We will show that $P(t)$ is true for every $t \in S$ by structural induction.

2. Base case ($t = \bullet$):
 $| \cdot | = 1 = 2^1 - 1 = 2^{0+1} - 1 = 2^{[\bullet]+1} - 1$ so $P(\bullet)$ is true.

3. Inductive hypothesis:
 Assume that $P(L)$ and $P(R)$ are true for some arbitrary $L, R \in S$.

4. Inductive step:
 We want to prove that $P(\text{Tree}(\bullet, L, R))$ is true.

 $|\text{Tree}(\bullet, L, R)| = 1 + |L| + |R|$
 $\leq 1 + (2^{[L]+1} - 1) + (2^{[R]+1} - 1)$
 $\leq 2^{[L]+1} + 2^{[R]+1} - 1$
 $\leq 2(2^{\max([L],[R])+1}) - 1$
 $= 2(2^{\lceil [\text{Tree}(\bullet, L, R)] \rceil}) - 1$
 $= 2^{\lceil [\text{Tree}(\bullet, L, R)] \rceil + 1} - 1$

 by defn of $| |$
 by IH
 algebra
 by defn of max
 by defn of $\lceil \rceil$

 which is the desired result.

Define S by

Basis: $\bullet \in S$.
Recursive: if $L, R \in S$, then $\text{Tree}(\bullet, L, R) \in S$

Size
$|\bullet| = 1$
$|\text{Tree}(\bullet, L, R)| = 1 + |L| + |R|$

Height
$[\bullet] = 0$
$\lceil [\text{Tree}(\bullet, L, R)] \rceil = 1 + \max([L],[R])$
Prove $|t| \leq 2^{\lceil t \rceil} + 1 - 1$ for every rooted binary tree t

1. Let $P(t)$ be $|t| \leq 2^{\lceil t \rceil} + 1 - 1$.

 We will show that $P(t)$ is true for every $t \in S$ by structural induction.

2. Base case ($t = \bullet$):

 $|\bullet| = 1 = 2^1 - 1 = 2^{0+1} - 1 = 2^{\lceil \bullet \rceil} + 1 - 1$ so $P(\bullet)$ is true.

3. Inductive hypothesis:

 Assume that $P(L)$ and $P(R)$ are true for some arbitrary $L, R \in S$.

4. Inductive step:

 We want to prove that $P(\text{Tree}(\bullet, L, R))$ is true.

 $|\text{Tree}(\bullet, L, R)| = 1 + |L| + |R| = 1 + (2^{\lceil L \rceil} + 1) + (2^{\lceil R \rceil} + 1) - 1$

 $\leq 1 + 2^{\lceil L \rceil} + 2^{\lceil R \rceil} + 1 - 1$

 $\leq 2^{\lceil L \rceil + 1} + 2^{\lceil R \rceil + 1} - 1$

 $\leq 2(2^{\max(\lceil L \rceil, \lceil R \rceil) + 1}) - 1$

 $= 2(2^{\lceil \text{Tree}(\bullet, L, R) \rceil}) - 1$

 $= 2^{\lceil \text{Tree}(\bullet, L, R) \rceil + 1} - 1$

 which is the desired result.

5. The result follows for all $t \in S$ by structural induction.
Regular expressions
Definition, examples, applications.
Sets of strings as languages

A *language* is a sets of strings with specific syntax, e.g.:
- Syntactically correct Java/C/C++ programs.
- The set Σ^* of all strings over the alphabet Σ.
- Palindromes over Σ.
- Binary strings with no 1’s before 0’s.
Sets of strings as languages

A language is a sets of strings with specific syntax, e.g.:
- Syntactically correct Java/C/C++ programs.
- The set Σ^* of all strings over the alphabet Σ.
- Palindromes over Σ.
- Binary strings with no 1’s before 0’s.

Regular expressions let us specify regular languages, e.g.:
- All binary strings.
- The strings \{0000, 0010, 1000, 1010\}.
- All strings that contain the string “CSE311”.

Regular expressions over Σ: syntax

Basis step:
- \emptyset, ϵ are regular expressions.
- a is a regular expression for any $a \in \Sigma$.

Recursive step:
- If A and B are regular expressions, then so are $AB, A \cup B$, and A^*.
Regular expressions over Σ: syntax

Basis step:
- \emptyset, ε are regular expressions.
- a is a regular expression for any $a \in \Sigma$.

Recursive step:
- If A and B are regular expressions, then so are $AB, A \cup B$, and A^*.

Examples: regular expressions of $\Sigma = \{0, 1\}$
- Basis: $\emptyset, \varepsilon, 0, 1$.
- Recursive: $01011, 0^*1^*, (0 \cup 1)0(0 \cup 1)0$, etc.
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ.
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ. \emptyset represents the set with no strings.
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ.

- \emptyset represents the set with no strings.
- ε represents the set $\{\varepsilon\}$.
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ.

- \emptyset represents the set with no strings.
- ε represents the set $\{\varepsilon\}$.
- a represents the set $\{a\}$.
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ.

- \emptyset represents the set with no strings.
- ϵ represents the set $\{\epsilon\}$.
- a represents the set $\{a\}$.
- AB represents the concatenation of the sets represented by A and B: $\{a \cdot b \mid a \in A, b \in B\}$.
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ.

\emptyset represents the set with no strings.

ϵ represents the set $\{\epsilon\}$.

a represents the set $\{a\}$.

AB represents the concatenation of the sets represented by A and B: $\{a \cdot b \mid a \in A, b \in B\}$.

$A \cup B$ represents the union of the sets represented by A and B: $A \cup B$.
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ.

- \emptyset represents the set with no strings.
- ε represents the set $\{\varepsilon\}$.
- a represents the set $\{a\}$.
- AB represents the concatenation of the sets represented by A and B: $\{a \cdot b \mid a \in A, b \in B\}$.
- $A \cup B$ represents the union of the sets represented by A and B: $A \cup B$.
- A^* represents the concatenation of the set represented by A with itself zero or more times: $\bigcup_{k=0}^{\infty} A^k$, where $A^0 = \{\varepsilon\}$, $A^1 = A$, $A^2 = (AA)$, etc.
Regular expressions over Σ: semantics

A regular expression over Σ represents a set of strings over Σ.

- \emptyset represents the set with no strings.
- ε represents the set $\{\varepsilon\}$.
- a represents the set $\{a\}$.
- AB represents the concatenation of the sets represented by A and B: $\{a \cdot b \mid a \in A, b \in B\}$.
- $A \cup B$ represents the union of the sets represented by A and B: $A \cup B$.
- A^* represents the concatenation of the set represented by A with itself zero or more times: $\bigcup_{k=0}^{\infty} A^k$, where $A^0 = \{\varepsilon\}, A^1 = A, A^2 = (AA), \text{ etc.}$

Regular expressions can also be viewed as “patterns.” A regular expression R matches a string s if s is a member of the set of strings represented by R.
Examples of regular expressions

001*

0*1*

(0 ∪ 1)0(0 ∪ 1)0

(0*1*)*

(0 ∪ 1)*0110(0 ∪ 1)*
Examples of regular expressions

001*

Binary strings with “00” followed by any number of 1s.

0*1*

(0 ∪ 1)0(0 ∪ 1)0

(0*1*)*

(0 ∪ 1)*0110(0 ∪ 1)*
Examples of regular expressions

001*
 Binary strings with “00” followed by any number of 1s.
0*1*
 Binary strings with any number of 0s followed by any number of 1s.
(0 ∪ 1)0(0 ∪ 1)0

(0*1*)*

(0 ∪ 1)*0110(0 ∪ 1)*
Examples of regular expressions

001*
 Binary strings with “00” followed by any number of 1s.

0*1*
 Binary strings with any number of 0s followed by any number of 1s.

(0 ∪ 1)0(0 ∪ 1)0
 \{0000, 0010, 1000, 1010\}

(0*1*)*

(0 ∪ 1)*0110(0 ∪ 1)*
Examples of regular expressions

001*
 Binary strings with “00” followed by any number of 1s.

0*1*
 Binary strings with any number of 0s followed by any number of 1s.

(0 ∪ 1)0(0 ∪ 1)0
 {0000, 0010, 1000, 1010}

(0*1*)*
 All binary strings.

(0 ∪ 1)*0110(0 ∪ 1)*
Examples of regular expressions

\(001^*\)

Binary strings with “00” followed by any number of 1s.

\(0^*1^*\)

Binary strings with any number of 0s followed by any number of 1s.

\((0 \cup 1)0(0 \cup 1)0\)

\{0000, 0010, 1000, 1010\}

\((0^*1^*)^*\)

All binary strings.

\((0 \cup 1)^*0110(0 \cup 1)^*\)

Binary strings that contain “0110”.
Regular expressions in practice

Used to define the *tokens* in a programming language.
 Legal variable names, keywords, etc.

Used in *grep*, a Unix program that searches for patterns in a set of files.
 For example, `grep "311" *.md` searches for the string “311” in all Markdown files in the current directory.

Used in programs to process strings.
 These slides are generated with the help of regular expressions :(
Summary

Use structural induction to prove properties of recursive structures.
Follows from ordinary induction but is easier to use.
As powerful as ordinary induction.

To prove $\forall x \in S. P(x)$ using structural induction:
Show that P holds for the elements in the basis step of S.
Assume P for every existing element of S named in the recursive step.
Prove P for every new element of S created in the recursive step.

A regular expression defines a set of strings over an alphabet Σ.
\emptyset, ε, and $a \in \Sigma$ are regular expressions.
If A and B are regular expressions, then so are $(AB), (A \cup B), A^*$. Many practical applications, from grep to everyday programming.