CSE 311 Lecture 16: Induction

Emina Torlak and Kevin Zatloukal
Topics

Mathematical induction
A method for proving statements about all natural numbers.

Using induction
Using induction in formal and English proofs.

Example proofs by induction
Example proofs about sums and divisibility.

Induction starting at any integer
Proving theorems about all integers $n \geq b$ for some $b \in \mathbb{Z}$.

Strong induction
Induction with a stronger hypothesis.

Using strong induction
An example proof and when to use strong induction.
Mathematical induction

A method for proving statements about all natural numbers.
How would you prove this theorem?

Mods and exponents

For all integers $a, b, m > 0$ and $k \geq 0$,

$$a \equiv b \pmod{m} \rightarrow a^k \equiv b^k \pmod{m}.$$
How would you prove this theorem?

Mods and exponents

For all integers \(a, b, m > 0\) and \(k \geq 0\),
\[
a \equiv b \pmod{m} \rightarrow a^k \equiv b^k \pmod{m}.
\]

Proof

Let \(a, b, m > 0 \in \mathbb{Z}\) and \(k \geq 0 \in \mathbb{Z}\) be arbitrary. Suppose that \(a \equiv b \pmod{m}\).

By the multiplication property, we know that if \(a \equiv b \pmod{m}\) and \(c \equiv d \pmod{m}\), then \(ac \equiv bd \pmod{m}\). So, taking \(c\) to be \(a\) and \(d\) to be \(b\), we have \(a^2 \equiv b^2 \pmod{m}\).

Applying this reasoning repeatedly, we have
\[
(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \rightarrow (a^2 \equiv b^2 \pmod{m})
\]
\[
(a^2 \equiv b^2 \pmod{m} \land a \equiv b \pmod{m}) \rightarrow (a^3 \equiv b^3 \pmod{m})
\]

\[
\ldots
\]
\[
(a^{(k-1)} \equiv b^{(k-1)} \pmod{m} \land a \equiv b \pmod{m}) \rightarrow (a^k \equiv b^k \pmod{m}).
\]
How would you prove this theorem?

Mods and exponents

For all integers \(a, b, m > 0\) and \(k \geq 0\),
\[
a \equiv b \pmod{m} \implies a^k \equiv b^k \pmod{m}.
\]

Proof (almost):

Let \(a, b, m > 0 \in \mathbb{Z}\) and \(k \geq 0 \in \mathbb{Z}\) be arbitrary. Suppose that \(a \equiv b \pmod{m}\).

By the multiplication property, we know that if \(a \equiv b \pmod{m}\) and \(c \equiv d \pmod{m}\), then \(ac \equiv bd \pmod{m}\). So, taking \(c\) to be \(a\) and \(d\) to be \(b\), we have \(a^2 \equiv b^2 \pmod{m}\).

Applying this reasoning repeatedly, we have
\[
(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \implies (a^2 \equiv b^2 \pmod{m})
\]
\[
(a^2 \equiv b^2 \pmod{m} \land a \equiv b \pmod{m}) \implies (a^3 \equiv b^3 \pmod{m})
\]
\[
\vdots
\]
\[
(a^{(k-1)} \equiv b^{(k-1)} \pmod{m} \land a \equiv b \pmod{m}) \implies (a^k \equiv b^k \pmod{m}).
\]

This, uhm, completes the proof? \(\square\)
How would you prove this theorem?

Mods and exponents
For all integers \(a, b, m > 0\) and \(k \geq 0\),
\[
a \equiv b \pmod{m} \rightarrow a^k \equiv b^k \pmod{m}.
\]

Proof (almost):
Let \(a, b, m > 0 \in \mathbb{Z}\) and \(k \geq 0 \in \mathbb{Z}\) be arbitrary. Suppose that \(a \equiv b \pmod{m}\).

By the multiplication property, we know that if \(a \equiv b \pmod{m}\) and \(c \equiv d \pmod{m}\), then \(ac \equiv bd \pmod{m}\). So, taking \(c\) to be \(a\) and \(d\) to be \(b\), we have \(a^2 \equiv b^2 \pmod{m}\).

Applying this reasoning repeatedly, we have
\[
(a \equiv b \pmod{m} \land a \equiv b \pmod{m}) \rightarrow (a^2 \equiv b^2 \pmod{m})
\]
\[
(a^2 \equiv b^2 \pmod{m} \land a \equiv b \pmod{m}) \rightarrow (a^3 \equiv b^3 \pmod{m})
\]
\[
\vdots
\]
\[
(a^{(k-1)} \equiv b^{(k-1)} \pmod{m} \land a \equiv b \pmod{m}) \rightarrow (a^k \equiv b^k \pmod{m}).
\]

This, uhm, completes the proof? \(\square\)

We don’t have a proof rule to say “perform this step repeatedly.”
Perform a step repeatedly with induction!

\[
\begin{align*}
\text{Induction} & \quad P(0); \forall k. P(k) \rightarrow P(k + 1) \\
\therefore & \quad \forall n. P(n)
\end{align*}
\]

Domain: natural numbers \((\mathbb{N}) \).
Perform a step repeatedly with induction!

Induction

\[
P(0); \forall k. P(k) \rightarrow P(k + 1) \quad \therefore \quad \forall n. P(n)
\]

Domain: natural numbers \((\mathbb{N})\).

Induction is a logical rule of inference that applies (only) over \(\mathbb{N}\).

If we know that a property \(P\) holds for 0, and we know that \(\forall k. P(k) \rightarrow P(k + 1)\), then we can conclude that \(P\) holds for all natural numbers.
Perform a step repeatedly with induction!

Induction

\[P(0); \forall k. P(k) \rightarrow P(k + 1) \]

\[\therefore \forall n. P(n) \]

Domain: natural numbers (\(\mathbb{N} \)).

Induction is a logical rule of inference that applies (only) over \(\mathbb{N} \).

If we know that a property \(P \) holds for 0, and we know that \(\forall k. P(k) \rightarrow P(k + 1) \), then we can conclude that \(P \) holds for all natural numbers.

```java
// f(x) = x for all x >= 0.
public int f(int x) {
    if (x == 0) {
        return 0;
    } else {
        return f(x - 1) + 1;
    }
}
```

Induction is essential for reasoning about programs with loops and recursion.
Induction: how does it work?

\[\begin{align*}
\text{Induction} & \quad P(0) \land \forall k. P(k) \to P(k + 1) \\
\therefore & \quad \forall n. P(n)
\end{align*} \]

Domain: natural numbers (\(\mathbb{N}\)).

Suppose that we are given \(P(0)\) and \(\forall k. P(k) \to P(k + 1)\).

How does that give us \(P(k)\) for a concrete \(k\) such as 5?
Induction: how does it work?

\[
\text{Induction: } P(0); \forall k. P(k) \rightarrow P(k + 1) \quad \therefore \forall n. P(n)
\]

Domain: natural numbers (\(\mathbb{N}\)).

Suppose that we are given \(P(0)\) and \(\forall k. P(k) \rightarrow P(k + 1)\).

How does that give us \(P(k)\) for a concrete \(k\) such as 5?

1. First, we have \(P(0)\).
Induction: how does it work?

\[P(0); \forall k. P(k) \to P(k + 1) \]
\[\therefore \forall n. P(n) \]

Domain: natural numbers \((\mathbb{N})\).

Suppose that we are given \(P(0)\) and \(\forall k. P(k) \to P(k + 1)\).

How does that give us \(P(k)\) for a concrete \(k\) such as 5?

1. First, we have \(P(0)\).
2. Since \(P(k) \to P(k + 1)\) for all \(k\), we have \(P(0) \to P(1)\).
Induction: how does it work?

Induction: \[P(0); \forall k. P(k) \rightarrow P(k + 1) \]
\[\therefore \forall n. P(n) \]

Domain: natural numbers (\(\mathbb{N} \)).

Suppose that we are given \(P(0) \) and \(\forall k. P(k) \rightarrow P(k + 1) \).

How does that give us \(P(k) \) for a concrete \(k \) such as 5?

1. First, we have \(P(0) \).
 \[\text{P(0)} \]

2. Since \(P(k) \rightarrow P(k + 1) \) for all \(k \), we have \(P(0) \rightarrow P(1) \).
 \[\downarrow \text{P(0)} \rightarrow \text{P(1)} \]

3. Applying Modus Ponens to 1 and 2, we get \(P(1) \).
 \[\text{P(1)} \]
Induction: how does it work?

Induction \[P(0); \forall k. P(k) \rightarrow P(k + 1) \]
\[\therefore \forall n. P(n) \]

Domain: natural numbers (\(\mathbb{N}\)).

Suppose that we are given \(P(0)\) and \(\forall k. P(k) \rightarrow P(k + 1)\).

How does that give us \(P(k)\) for a concrete \(k\) such as 5?

1. First, we have \(P(0)\).
2. Since \(P(k) \rightarrow P(k + 1)\) for all \(k\), we have \(P(0) \rightarrow P(1)\).
3. Applying Modus Ponens to 1 and 2, we get \(P(1)\).
4. Since \(P(k) \rightarrow P(k + 1)\) for all \(k\), we have \(P(1) \rightarrow P(2)\).
Induction: how does it work?

\[
P(0); \forall k. P(k) \rightarrow P(k + 1) \quad \text{Induction}
\]

\[
\therefore \forall n. P(n) \quad \text{Domain: natural numbers (\(\mathbb{N}\))}
\]

Suppose that we are given \(P(0)\) and \(\forall k. P(k) \rightarrow P(k + 1)\).

How does that give us \(P(k)\) for a concrete \(k\) such as 5?

1. First, we have \(P(0)\).
2. Since \(P(k) \rightarrow P(k + 1)\) for all \(k\), we have \(P(0) \rightarrow P(1)\).
3. Applying Modus Ponens to 1 and 2, we get \(P(1)\).
4. Since \(P(k) \rightarrow P(k + 1)\) for all \(k\), we have \(P(1) \rightarrow P(2)\).
5. Applying Modus Ponens to 3 and 4, we get \(P(2)\).
Induction: how does it work?

Induction: \[P(0); \forall k. P(k) \rightarrow P(k + 1) \]
\[\therefore \forall n. P(n) \]

Domain: natural numbers (\(\mathbb{N}\)).

Suppose that we are given \(P(0)\) and \(\forall k. P(k) \rightarrow P(k + 1)\).

How does that give us \(P(k)\) for a concrete \(k\) such as 5?

1. First, we have \(P(0)\).
2. Since \(P(k) \rightarrow P(k + 1)\) for all \(k\), we have \(P(0) \rightarrow P(1)\).
3. Applying Modus Ponens to 1 and 2, we get \(P(1)\).
4. Since \(P(k) \rightarrow P(k + 1)\) for all \(k\), we have \(P(1) \rightarrow P(2)\).
5. Applying Modus Ponens to 3 and 4, we get \(P(2)\).
\[\vdots \]
11. Applying Modus Ponens to 9 and 10, we get \(P(5)\).
Using induction

Using induction in formal and English proofs.
Using the induction rule in a formal proof

\[
\begin{align*}
\text{Induction} & \quad P(0); \forall k. P(k) \rightarrow P(k + 1) \\
& \quad \therefore \forall n. P(n)
\end{align*}
\]

1. Prove \(P(0) \)

5. \(\forall k. P(k) \rightarrow P(k + 1) \)

6. \(\forall n. P(n) \) \quad \text{Induction: 1, 5}
Using the induction rule in a formal proof

\[
\begin{align*}
\text{Induction} & : P(0); \forall k. P(k) \rightarrow P(k + 1) \\
\quad & \therefore \forall n. P(n)
\end{align*}
\]

1. Prove \(P(0) \)
2. Let \(k \geq 0 \) be an arbitrary integer

4. \(P(k) \rightarrow P(k + 1) \)
5. \(\forall k. P(k) \rightarrow P(k + 1) \) \hspace{1cm} \text{Intro } \forall: 2, 4
6. \(\forall n. P(n) \) \hspace{1cm} \text{Induction: } 1, 5
Using the induction rule in a formal proof

\[P(0); \forall k. P(k) \rightarrow P(k + 1) \]

\[\therefore \forall n. P(n) \]

1. Prove \(P(0) \)
2. Let \(k \geq 0 \) be an arbitrary integer
 3.1. Assume that \(P(k) \) is true
 3.2. ...
 3.3. Prove \(P(k + 1) \) is true
4. \(P(k) \rightarrow P(k + 1) \) \hspace{1cm} \text{Direct Proof Rule}
5. \(\forall k. P(k) \rightarrow P(k + 1) \) \hspace{1cm} \text{Intro } \forall: 2, 4
6. \(\forall n. P(n) \) \hspace{1cm} \text{Induction: 1, 5}
Using the induction rule in a formal proof: key parts

\[P(0) \land \forall k. P(k) \rightarrow P(k + 1) \]
\[\therefore \forall n. P(n) \]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Base case</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Prove (P(0))</td>
<td>Induction</td>
<td>(P(0)); (\forall k. P(k) \rightarrow P(k + 1))</td>
</tr>
<tr>
<td>2</td>
<td>Let (k \geq 0) be an arbitrary integer</td>
<td>Inductive hypothesis</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Assume that (P(k)) is true</td>
<td>Inductive step</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>…</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3</td>
<td>Prove (P(k + 1)) is true</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(P(k) \rightarrow P(k + 1))</td>
<td>Direct Proof Rule</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(\forall k. P(k) \rightarrow P(k + 1))</td>
<td>Intro (\forall): 2, 4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(\forall n. P(n))</td>
<td>Induction: 1, 5</td>
<td></td>
</tr>
</tbody>
</table>
Translating to an English proof: the template

1. Let $P(n)$ be [definition of $P(n)$].
 We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

2. Base case ($n = 0$):
 [Proof of $P(0)$.]

3. Inductive hypothesis:
 Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.

4. Inductive step:
 We want to prove that $P(k + 1)$ is true.
 [Proof of $P(k + 1)$. This proof must invoke the inductive hypothesis somewhere.]

5. The result follows for all $n \geq 0$ by induction.
Translating to an English proof: the template

1. Let $P(n)$ be [definition of $P(n)$].
 We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

2. Base case ($n = 0$):
 [Proof of $P(0)$.]

3. Inductive hypothesis:
 Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.

4. Inductive step:
 We want to prove that $P(k + 1)$ is true.
 [Proof of $P(k + 1)$. This proof must invoke the inductive hypothesis somewhere.]

5. The result follows for all $n \geq 0$ by induction.

Induction dos and don’ts:
- **Do** write out all 5 steps.
- **Do** point out where you are using the inductive hypothesis in step \(\circled{4} \).
- **Don’t** assume $P(k + 1)$!
Example proofs by induction

Example proofs about sums and divisibility.
What is $\sum_{i=0}^{n} 2^i$ for an arbitrary $n \in \mathbb{N}$?

Recall that $\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + \ldots + 2^n$.
What is $\sum_{i=0}^{n} 2^i$ for an arbitrary $n \in \mathbb{N}$?

Recall that $\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + \ldots + 2^n$.

Let’s look at a few examples:

\[
\begin{align*}
\sum_{i=0}^{0} 2^i &= 1 \\
\sum_{i=0}^{1} 2^i &= 1 + 2 = 3 \\
\sum_{i=0}^{2} 2^i &= 1 + 2 + 4 = 7 \\
\sum_{i=0}^{3} 2^i &= 1 + 2 + 4 + 8 = 15 \\
\sum_{i=0}^{4} 2^i &= 1 + 2 + 4 + 8 + 16 = 31
\end{align*}
\]
What is $\sum_{i=0}^{n} 2^i$ for an arbitrary $n \in \mathbb{N}$?

Recall that $\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + \ldots + 2^n$.

Let’s look at a few examples:

- $\sum_{i=0}^{0} 2^i = 1$
- $\sum_{i=0}^{1} 2^i = 1 + 2 = 3$
- $\sum_{i=0}^{2} 2^i = 1 + 2 + 4 = 7$
- $\sum_{i=0}^{3} 2^i = 1 + 2 + 4 + 8 = 15$
- $\sum_{i=0}^{4} 2^i = 1 + 2 + 4 + 8 + 16 = 31$

It looks like this sum is $2^{n+1} - 1$.

Let’s use induction to prove it!
Prove $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$ for all $n \in \mathbb{N}$
Prove \(\sum_{i=0}^{n} 2^i = 2^{n+1} - 1 \) for all \(n \in \mathbb{N} \)

1. Let \(P(n) \) be \(\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + \ldots + 2^n = 2^{n+1} - 1 \).

 We will show that \(P(n) \) is true for every integer \(n \geq 0 \) by induction.
Prove $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$ for all $n \in \mathbb{N}$

1. Let $P(n)$ be $\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + \ldots + 2^n = 2^{n+1} - 1$.
 We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

2. Base case ($n = 0$):
 $\sum_{i=0}^{0} 2^i = 2^0 = 1 = 2^{0+1} - 1$ so $P(0)$ is true.
Prove $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$ for all $n \in \mathbb{N}$

1. Let $P(n)$ be $\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + \ldots + 2^n = 2^{n+1} - 1$.
 We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

2. Base case ($n = 0$):
 $\sum_{i=0}^{0} 2^i = 2^0 = 1 = 2^{0+1} - 1$ so $P(0)$ is true.

3. Inductive hypothesis:
 Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.
Prove $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$ for all $n \in \mathbb{N}$

1. Let $P(n)$ be $\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + \ldots + 2^n = 2^{n+1} - 1$.
 We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

2. Base case ($n = 0$):
 $\sum_{i=0}^{0} 2^i = 2^0 = 1 = 2^{0+1} - 1$ so $P(0)$ is true.

3. Inductive hypothesis:
 Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.

4. Inductive step: Assume $P(k)$ to prove $P(k + 1)$, not vice versa!

 We want to prove that $P(k + 1)$ is true, i.e., $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$. Note that
 $\sum_{i=0}^{k+1} 2^i = (\sum_{i=0}^{k} 2^i) + 2^{k+1} = (2^{k+1} - 1) + 2^{k+1}$ by the inductive hypothesis.
 From this, we have that $(2^{k+1} - 1) + 2^{k+1} = 2 \times 2^{k+1} - 1 = 2^{k+1+1} - 1 = 2^{k+2} - 1$, which is exactly $P(k + 1)$.

Prove $\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$ for all $n \in \mathbb{N}$

1. Let $P(n)$ be $\sum_{i=0}^{n} 2^i = 2^0 + 2^1 + \ldots + 2^n = 2^{n+1} - 1$.
 We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

2. Base case ($n = 0$): $\sum_{i=0}^{0} 2^i = 2^0 = 1 = 2^{0+1} - 1$ so $P(0)$ is true.

3. Inductive hypothesis: Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.

4. Inductive step: Assume $P(k)$ to prove $P(k + 1)$, not vice versa!

 We want to prove that $P(k + 1)$ is true, i.e., $\sum_{i=0}^{k+1} 2^i = 2^{k+2} - 1$. Note that $\sum_{i=0}^{k+1} 2^i = (\sum_{i=0}^{k} 2^i) + 2^{k+1} = (2^{k+1} - 1) + 2^{k+1}$ by the inductive hypothesis. From this, we have that $(2^{k+1} - 1) + 2^{k+1} = 2 \cdot 2^{k+1} - 1 = 2^{k+2} - 1$, which is exactly $P(k + 1)$.

5. The result follows for all $n \geq 0$ by induction.
Prove $\sum_{i=0}^{n} i = n(n + 1)/2$ for all $n \in \mathbb{N}$
Prove $\sum_{i=0}^{n} i = n(n + 1)/2$ for all $n \in \mathbb{N}$

① Let $P(n)$ be $\sum_{i=0}^{n} i = 0 + 1 + \ldots + n = n(n + 1)/2$.

We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.
Prove $\sum_{i=0}^{n} i = n(n + 1)/2$ for all $n \in \mathbb{N}$

① Let $P(n)$ be $\sum_{i=0}^{n} i = 0 + 1 + \ldots + n = n(n + 1)/2$.
 We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

② Base case ($n = 0$):
 $\sum_{i=0}^{n} i = 0 = 0(0 + 1)/2$ so $P(0)$ is true.
Prove $\sum_{i=0}^{n} i = n(n + 1)/2$ for all $n \in \mathbb{N}$

① Let $P(n)$ be $\sum_{i=0}^{n} i = 0 + 1 + \ldots + n = n(n + 1)/2$.
 We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

② Base case ($n = 0$):
 $\sum_{i=0}^{n} i = 0 = 0(0 + 1)/2$ so $P(0)$ is true.

③ Inductive hypothesis:
 Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.
Prove $\sum_{i=0}^{n} i = n(n + 1)/2$ for all $n \in \mathbb{N}$

1. Let $P(n)$ be $\sum_{i=0}^{n} i = 0 + 1 + \ldots + n = n(n + 1)/2$.
 We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

2. Base case ($n = 0$):
 \[\sum_{i=0}^{n} i = 0 = 0(0 + 1)/2 \] so $P(0)$ is true.

3. Inductive hypothesis:
 Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.

4. Inductive step:
 We want to prove that $P(k + 1)$ is true, i.e., $\sum_{i=0}^{k+1} i = (k + 1)(k + 2)/2$. Note that $\sum_{i=0}^{k+1} i = (\sum_{i=0}^{k} i) + (k + 1) = (k(k + 1)/2) + (k + 1)$ by the inductive hypothesis. From this, we have that $\sum_{i=0}^{k+1} i = (k(k + 1)/2 + (k + 1) = (k + 1)(k/2 + 1) = (k + 1)(k + 2)/2$, which is exactly $P(k + 1)$.

Prove $\sum_{i=0}^{n} i = n(n + 1)/2$ for all $n \in \mathbb{N}$

1. Let $P(n)$ be $\sum_{i=0}^{n} i = 0 + 1 + \ldots + n = n(n + 1)/2$. We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

2. Base case ($n = 0$):
 $\sum_{i=0}^{n} i = 0 = 0(0 + 1)/2$ so $P(0)$ is true.

3. Inductive hypothesis:
 Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.

4. Inductive step:
 We want to prove that $P(k + 1)$ is true, i.e., $\sum_{i=0}^{k+1} i = (k + 1)(k + 2)/2$. Note that $\sum_{i=0}^{k+1} i = \left(\sum_{i=0}^{k} i \right) + (k + 1) = (k(k + 1)/2) + (k + 1)$ by the inductive hypothesis. From this, we have that $(k(k + 1)/2) + (k + 1) = (k + 1)(k/2 + 1) = (k + 1)(k + 2)/2$, which is exactly $P(k + 1)$.

5. The result follows for all $n \geq 0$ by induction.
What number divides $2^{2n} - 1$ for every $n \in \mathbb{N}$?
What number divides $2^{2n} - 1$ for every $n \in \mathbb{N}$?

Let's look at a few examples:

$2^{2\times0} - 1 = 1 - 1 = 0 = 3 \times 0$

$2^{2\times1} - 1 = 4 - 1 = 3 = 3 \times 1$

$2^{2\times2} - 1 = 16 - 1 = 15 = 3 \times 5$

$2^{2\times3} - 1 = 64 - 1 = 63 = 3 \times 21$

$2^{2\times4} - 1 = 256 - 1 = 255 = 3 \times 85$
What number divides $2^{2n} - 1$ for every $n \in \mathbb{N}$?

Let’s look at a few examples:

- $2^{2*0} - 1 = 1 - 1 = 0 = 3 * 0$
- $2^{2*1} - 1 = 4 - 1 = 3 = 3 * 1$
- $2^{2*2} - 1 = 16 - 1 = 15 = 3 * 5$
- $2^{2*3} - 1 = 64 - 1 = 63 = 3 * 21$
- $2^{2*4} - 1 = 256 - 1 = 255 = 3 * 85$

It looks like $3|(2^{2n} - 1)$.

Let’s use induction to prove it!
Prove $3 | (2^{2n} - 1)$ for all $n \in \mathbb{N}$
Prove $3 | (2^{2n} - 1)$ for all $n \in \mathbb{N}$

① Let $P(n)$ be $3 | (2^{2n} - 1)$.

We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.
Prove $3|(2^{2n} - 1)$ for all $n \in \mathbb{N}$

① Let $P(n)$ be $3|(2^{2n} - 1)$.
We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

② Base case ($n = 0$):
$2^{2\times0} - 1 = 1 - 1 = 0 = 3 \times 0$ so $P(0)$ is true.
Prove $3 \mid (2^{2n} - 1)$ for all $n \in \mathbb{N}$

1. Let $P(n)$ be $3 \mid (2^{2n} - 1)$.

 We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

2. Base case ($n = 0$):

 $2^{2 \times 0} - 1 = 1 - 1 = 0 = 3 \times 0$ so $P(0)$ is true.

3. Inductive hypothesis:

 Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.
Prove $3|(2^{2n} - 1)$ for all $n \in \mathbb{N}$

① Let $P(n)$ be $3|(2^{2n} - 1)$.
 We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

② Base case ($n = 0$):
 $2^{2*0} - 1 = 1 - 1 = 0 = 3 \times 0$ so $P(0)$ is true.

③ Inductive hypothesis:
 Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.

④ Inductive step:
 We want to prove that $P(k + 1)$ is true, i.e., $3|(2^{2(k+1)} - 1)$. By inductive hypothesis, $3|(2^{2k} - 1)$ so $2^{2k} - 1 = 3j$ for some integer j. We therefore have that $2^{2(k+1)} - 1 = 2^{2k+2} - 1 = 4(2^{2k}) - 1 = 4(3j + 1) - 1 = 12j + 3 = 3(4j + 1)$. So $3|(2^{2(k+1)} - 1)$, which is exactly $P(k + 1)$.
Prove $3|(2^{2n} - 1)$ for all $n \in \mathbb{N}$

1. Let $P(n)$ be $3|(2^{2n} - 1)$.

 We will show that $P(n)$ is true for every integer $n \geq 0$ by induction.

2. Base case ($n = 0$):

 $2^{2\cdot0} - 1 = 1 - 1 = 0 = 3 \cdot 0$ so $P(0)$ is true.

3. Inductive hypothesis:

 Suppose that $P(k)$ is true for an arbitrary integer $k \geq 0$.

4. Inductive step:

 We want to prove that $P(k + 1)$ is true, i.e., $3|(2^{2(k+1)} - 1)$. By inductive hypothesis, $3|(2^{2k} - 1)$ so $2^{2k} - 1 = 3j$ for some integer j. We therefore have that $2^{2(k+1)} - 1 = 2^{2k+2} - 1 = 4(2^{2k}) - 1 = 4(3j + 1) - 1 = 12j + 3 = 3(4j + 1)$. So $3|(2^{2(k+1)} - 1)$, which is exactly $P(k + 1)$.

5. The result follows for all $n \geq 0$ by induction.
Induction starting at any integer

Proving theorems about all integers $n \geq b$ for some $b \in \mathbb{Z}$.
Changing the start line

How can we prove $P(n)$ for all integers $n \geq b$ for some integer b?
Changing the start line

How can we prove $P(n)$ for all integers $n \geq b$ for some integer b?

Define a predicate $Q(n) = P(n + b)$ for all $n \geq 0$.

Then $(\forall n. Q(n)) \equiv (\forall n \geq b. P(n))$
Changing the start line

How can we prove $P(n)$ for all integers $n \geq b$ for some integer b?

Define a predicate $Q(n) = P(n + b)$ for all $n \geq 0$.
Then $(\forall n. Q(n)) \equiv (\forall n \geq b. P(n))$

Use ordinary induction to prove Q:
Prove $Q(0) \equiv P(b)$.
Prove $(\forall k. Q(k) \rightarrow Q(k + 1)) \equiv (\forall k \geq b. P(k) \rightarrow P(k + 1))$.
Changing the start line

How can we prove $P(n)$ for all integers $n \geq b$ for some integer b?

Define a predicate $Q(n) = P(n + b)$ for all $n \geq 0$.

Then $(\forall n. Q(n)) \equiv (\forall n \geq b. P(n))$

Use ordinary induction to prove Q:

Prove $Q(0) \equiv P(b)$.

Prove $(\forall k. Q(k) \rightarrow Q(k + 1)) \equiv (\forall k \geq b. P(k) \rightarrow P(k + 1))$.

By convention, we don’t define Q explicitly. Instead, we modify our proof template to account for the non-zero base case b.
Inductive proofs for any base case \(b \in \mathbb{Z} \)

1. Let \(P(n) \) be \[\text{definition of } P(n) \].
 We will show that \(P(n) \) is true for every integer \(n \geq b \) by induction.

2. Base case \((n = b) \):
 \[\text{Proof of } P(b) \].

3. Inductive hypothesis:
 Suppose that \(P(k) \) is true for an arbitrary integer \(k \geq b \).

4. Inductive step:
 We want to prove that \(P(k + 1) \) is true.
 \[\text{Proof of } P(k + 1). \text{ This proof must invoke the inductive hypothesis.} \]

5. The result follows for all \(n \geq b \) by induction.
Example: prove $3^n \geq n^2 + 3$ for all $n \geq 2$
Example: prove \(3^n \geq n^2 + 3\) for all \(n \geq 2\)

1. Let \(P(n)\) be \(3^n \geq n^2 + 3\).

 We will show that \(P(n)\) is true for every integer \(n \geq 2\) by induction.
Example: prove $3^n \geq n^2 + 3$ for all $n \geq 2$

① Let $P(n)$ be $3^n \geq n^2 + 3$.
 We will show that $P(n)$ is true for every integer $n \geq 2$ by induction.

② Base case ($n = 2$):
 \[3^2 = 9 \geq 7 = 4 + 3 = 2^2 + 3\] so $P(2)$ is true.
Example: prove $3^n \geq n^2 + 3$ for all $n \geq 2$

① Let $P(n)$ be $3^n \geq n^2 + 3$.
 We will show that $P(n)$ is true for every integer $n \geq 2$ by induction.

② Base case ($n = 2$):

 $3^2 = 9 \geq 7 = 4 + 3 = 2^2 + 3$ so $P(2)$ is true.

③ Inductive hypothesis:

 Suppose that $P(k)$ is true for an arbitrary integer $k \geq 2$.

Example: prove $3^n \geq n^2 + 3$ for all $n \geq 2$

1. Let $P(n)$ be $3^n \geq n^2 + 3$.
 We will show that $P(n)$ is true for every integer $n \geq 2$ by induction.

2. Base case ($n = 2$):

 $3^2 = 9 \geq 7 = 4 + 3 = 2^2 + 3$ so $P(2)$ is true.

3. Inductive hypothesis:
 Suppose that $P(k)$ is true for an arbitrary integer $k \geq 2$.

4. Inductive step:
 We want to prove that $P(k + 1)$ is true, i.e., $3^{(k+1)} \geq (k + 1)^2 + 3 = k^2 + 2k + 4$. Note that $3^{(k+1)} = 3(3^k) \geq 3(k^2 + 3)$ by the inductive hypothesis. From this we have $3(k^2 + 3) = 2k^2 + k^2 + 9 \geq k^2 + 2k + 4 = (k + 1)^2 + 3$ since $k \geq 2$. Therefore $P(k + 1)$ is true.
Example: prove $3^n \geq n^2 + 3$ for all $n \geq 2$

① Let $P(n)$ be $3^n \geq n^2 + 3$.

We will show that $P(n)$ is true for every integer $n \geq 2$ by induction.

② Base case ($n = 2$):

$3^2 = 9 \geq 7 = 4 + 3 = 2^2 + 3$ so $P(2)$ is true.

③ Inductive hypothesis:

Suppose that $P(k)$ is true for an arbitrary integer $k \geq 2$.

④ Inductive step:

We want to prove that $P(k + 1)$ is true, i.e., $3^{(k+1)} \geq (k + 1)^2 + 3 = k^2 + 2k + 4$. Note that $3^{(k+1)} = 3(3^k) \geq 3(k^2 + 3)$ by the inductive hypothesis. From this we have $3(k^2 + 3) = 2k^2 + k^2 + 9 \geq k^2 + 2k + 4 = (k + 1)^2 + 3$ since $k \geq 2$. Therefore $P(k + 1)$ is true.

⑤ The result follows for all $n \geq 2$ by induction.
Strong induction

Induction with a stronger hypothesis.
Recall how induction works

Induction

\[P(0); \forall k. P(k) \rightarrow P(k + 1) \]

\[\therefore \forall n. P(n) \]

Domain: natural numbers (\(\mathbb{N} \)).

How do we get \(P(5) \) from \(P(0) \) and \(\forall k. P(k) \rightarrow P(k + 1) \)?

1. First, we have \(P(0) \).
2. Since \(P(k) \rightarrow P(k + 1) \) for all \(k \), we have \(P(0) \rightarrow P(1) \).
3. Applying Modus Ponens to 1 and 2, we get \(P(1) \).
4. Since \(P(k) \rightarrow P(k + 1) \) for all \(k \), we have \(P(1) \rightarrow P(2) \).
5. Applying Modus Ponens to 3 and 4, we get \(P(2) \).

\[\vdots \]

11. Applying Modus Ponens to 9 and 10, we get \(P(5) \).
Recall how induction works

Induction

\[
P(0); \forall k. P(k) \rightarrow P(k + 1)
\]
\[
\therefore \forall n. P(n)
\]

Domain: natural numbers (\(\mathbb{N}\)).

How do we get \(P(5)\) from \(P(0)\) and \(\forall k. P(k) \rightarrow P(k + 1)\)?

1. First, we have \(P(0)\).
2. Since \(P(k) \rightarrow P(k + 1)\) for all \(k\), we have \(P(0) \rightarrow P(1)\).
3. Applying Modus Ponens to 1 and 2, we get \(P(1)\).
4. Since \(P(k) \rightarrow P(k + 1)\) for all \(k\), we have \(P(1) \rightarrow P(2)\).
5. Applying Modus Ponens to 3 and 4, we get \(P(2)\).

\[\vdots\]

11. Applying Modus Ponens to 9 and 10, we get \(P(5)\).

Note that we have \(P(0), \ldots, P(k)\) when proving \(k + 1\). So we can safely assume all of them, rather than just \(P(k)\).
The strong induction rule of inference

Strong Induction

\[P(0); \forall k. (P(0) \land P(1) \land \ldots \land P(k)) \rightarrow P(k + 1) \]

\[\therefore \forall n. P(n) \]

Domain: \(\mathbb{N} \).

Strong induction for \(P \) follows from ordinary induction for \(Q \) where

\[Q(k) = P(0) \land P(1) \land P(2) \land \ldots \land P(k) \]

To see why, note the following:

\[Q(0) \equiv P(0) \]

\[Q(k + 1) \equiv Q(k) \land P(k + 1) \]

\[(\forall n. Q(n)) \equiv (\forall n. P(n)) \]
Strong inductive proofs for any base case $b \in \mathbb{Z}$

1. Let $P(n)$ be [definition of $P(n)$].
 We will show that $P(n)$ is true for every integer $n \geq b$ by strong induction.

2. Base case ($n = b$):
 [Proof of $P(b)$.]

3. Inductive hypothesis:
 Suppose that for some arbitrary integer $k \geq b$, $P(j)$ is true for every integer $b \leq j \leq k$.

4. Inductive step:
 We want to prove that $P(k + 1)$ is true.
 [Proof of $P(k + 1)$. The proof must invoke the strong inductive hypothesis.]

5. The result follows for all $n \geq b$ by strong induction.
Using strong induction

An example proof and when to use strong induction.
Example: the fundamental theorem of arithmetic

Fundamental theorem of arithmetic
Every positive integer greater than 1 has a unique prime factorization.

Examples

\[48 = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3\]
\[591 = 3 \cdot 197\]
\[45,523 = 45,523\]
\[321,950 = 2 \cdot 5 \cdot 5 \cdot 47 \cdot 137\]
\[1,234,567,890 = 2 \cdot 3 \cdot 3 \cdot 5 \cdot 3,607 \cdot 3,803\]

We will use strong induction to prove that a factorization into primes exists (but not that it is unique).
Prove that every integer ≥ 2 is a product of primes
Prove that every integer ≥ 2 is a product of primes

Let $P(n)$ be “n is a product of primes”.

We will show that $P(n)$ is true for every integer $n \geq 2$ by strong induction.
Prove that every integer ≥ 2 is a product of primes

1. Let $P(n)$ be “n is a product of primes”.

 We will show that $P(n)$ is true for every integer $n \geq 2$ by strong induction.

2. Base case ($n = 2$):

 2 is prime, so it is a product of primes. Therefore $P(2)$ is true.
Prove that every integer ≥ 2 is a product of primes

1. Let $P(n)$ be “n is a product of primes”.
 We will show that $P(n)$ is true for every integer $n \geq 2$ by strong induction.

2. Base case ($n = 2$):
 2 is prime, so it is a product of primes. Therefore $P(2)$ is true.

3. Inductive hypothesis:
 Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer $2 \leq j \leq k$.
Prove that every integer ≥ 2 is a product of primes

1. Let $P(n)$ be "n is a product of primes".
 We will show that $P(n)$ is true for every integer $n \geq 2$ by strong induction.

2. Base case ($n = 2$):
 2 is prime, so it is a product of primes. Therefore $P(2)$ is true.

3. Inductive hypothesis:
 Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer $2 \leq j \leq k$.

4. Inductive step:
 We want to prove that $P(k + 1)$ is true, i.e., $k + 1$ is a product of primes.
Prove that every integer ≥ 2 is a product of primes

① Let $P(n)$ be “n is a product of primes”.
 We will show that $P(n)$ is true for every integer $n \geq 2$ by strong induction.

② Base case ($n = 2$):
 2 is prime, so it is a product of primes. Therefore $P(2)$ is true.

③ Inductive hypothesis:
 Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer $2 \leq j \leq k$.

④ Inductive step:
 We want to prove that $P(k + 1)$ is true, i.e., $k + 1$ is a product of primes.
 Case: $k + 1$ is prime. Then by definition, $k + 1$ is a product of primes.
Prove that every integer ≥ 2 is a product of primes

1. Let $P(n)$ be “n is a product of primes”.
 We will show that $P(n)$ is true for every integer $n \geq 2$ by strong induction.

2. Base case ($n = 2$):
 2 is prime, so it is a product of primes. Therefore $P(2)$ is true.

3. Inductive hypothesis:
 Suppose that for some arbitrary integer $k \geq 2$, $P(j)$ is true for every integer $2 \leq j \leq k$.

4. Inductive step:
 We want to prove that $P(k + 1)$ is true, i.e., $k + 1$ is a product of primes.
 Case: $k + 1$ is prime. Then by definition, $k + 1$ is a product of primes.
 Case: $k + 1$ is composite. Then by $k + 1 = ab$ for some integers ab where $2 \leq a, b \leq k$.
 By inductive hypothesis, we have $P(a) = p_1p_2 \ldots p_r$ and $P(b) = q_1q_2 \ldots q_s$, where
 $p_1, p_2, \ldots, p_r, q_1, q_2, \ldots, q_s$ are prime. Thus, $k + 1 = ab = p_1p_2 \ldots p_rq_1q_2 \ldots q_s$, which
 is a product of primes.
Prove that every integer \(\geq 2 \) is a product of primes

1. Let \(P(n) \) be “\(n \) is a product of primes”.
 We will show that \(P(n) \) is true for every integer \(n \geq 2 \) by strong induction.

2. Base case \((n = 2)\):
 2 is prime, so it is a product of primes. Therefore \(P(2) \) is true.

3. Inductive hypothesis:
 Suppose that for some arbitrary integer \(k \geq 2 \), \(P(j) \) is true for every integer \(2 \leq j \leq k \).

4. Inductive step:
 We want to prove that \(P(k + 1) \) is true, i.e., \(k + 1 \) is a product of primes.
 Case: \(k + 1 \) is prime. Then by definition, \(k + 1 \) is a product of primes.
 Case: \(k + 1 \) is composite. Then by \(k + 1 = ab \) for some integers \(ab \) where \(2 \leq a, b \leq k \).
 By inductive hypothesis, we have \(P(a) = p_1p_2 \ldots p_r \) and \(P(b) = q_1q_2 \ldots q_s \), where \(p_1, p_2, \ldots, p_r, q_1, q_2, \ldots, q_s \) are prime. Thus, \(k + 1 = ab = p_1p_2 \ldots p_rq_1q_2 \ldots q_s \), which is a product of primes.

5. The result follows for all \(n \geq 2 \) by strong induction.
Strong induction is particularly useful when …

We need to reason about procedures that given an input \(k \) invoke themselves recursively on an input different from \(k - 1 \).

Example:

Euclidean algorithm for computing \(\text{GCD}(a, b) \).

```java
// Assumes a >= b >= 0.
public static int gcd(int a, int b) {
    if (b == 0)
        return a; // GCD(a, 0) = a
    else
        return gcd(b, a % b); // GCD(a, b) = GCD(b, a mod b)
}
```

We use strong induction to reason about this algorithm and other functions with recursive definitions.
Summary

Induction lets us prove statements about all natural numbers.
A proof by induction must show that \(P(0) \) is true (base case).
And it must use the inductive hypothesis \(P(k) \) to show that \(P(k + 1) \) is true (inductive step).

Induction also lets us prove theorems about integers \(n \geq b \) for \(b \in \mathbb{Z} \).
Adjust all parts of the proof to use \(n \geq b \) instead of \(n \geq 0 \).

Strong induction lets us assume a stronger inductive hypothesis.
This makes some proofs easier.
But every proof by strong induction can be transformed into a proof by ordinary induction and vice versa.