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Topics
Modular arithmetic basics

Review of .
Modular arithmetic properties

Congruence, addition, multiplication, proofs.
Modular arithmetic and integer representations

Unsigned, sign-magnitude, and two’s complement representation.
Applications of modular arithmetic

Hashing, pseudo-random numbers, ciphers.

Lecture 11
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Modular arithmetic basics
Review of .Lecture 11
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Key definition: divisibility

Definition:  divides , written as .
For , .

We also say that  is divisible by  when .

a b a|b
a ∈ ℤ, b ∈ ℤ a|b ↔ ∃k ∈ ℤ. b = ka

b a a|b
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Key theorem: division theorem

Division theorem
For  with ,
there exist unique integers  with 
such that .

That is, if we divide  by , we get a unique

quotient  and
non-negative remainder .

So, .

a ∈ ℤ, d ∈ ℤ d > 0
q, r 0 ≤ r < d

a = dq + r

a d
q = a div d

r = a mod d
a = d(a div d) + (a mod d)
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Modular arithmetic properties
Congruence, addition, multiplication, proofs.
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Congruence modulo a positive integer

Definition:  is congruent to  modulo , written as 
For  with , 

We read “ ” as “  is congruent to  modulo ”, which
means .

So, “congruence modulo ” is a predicate on integers, written using the
notation “ ”.

a b m a ≡ b (mod m)
a, b, m ∈ ℤ m > 0 a ≡ b (mod m) ↔ m|(a − b)

a ≡ b (mod m) a b m
m|(a − b)

m
≡ (mod m)
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Congruence and equality

Congruence property
Let  with .
Then,  if and only if .

a, b, m ∈ ℤ m > 0
a ≡ b (mod m) a mod m = b mod m
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Congruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that .  

  
 

 

Suppose that . 
 

  
 

a, b, m ∈ ℤ m > 0
a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m)

a mod m = b mod m
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Congruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. 

  
 

 

Suppose that . 
 

  
 

a, b, m ∈ ℤ m > 0
a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b

a mod m = b mod m

8

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture12.html?print-pdf#/


Congruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides.  

 
 

Suppose that . 
 

  
 

a, b, m ∈ ℤ m > 0
a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km
k ∈ ℤ

a mod m = b mod m
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Congruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . 

 
 

Suppose that . 
 

  
 

a, b, m ∈ ℤ m > 0
a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km
k ∈ ℤ a = b + km

a mod m = b mod m
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Congruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . 

 

Suppose that . 
 

  
 

a, b, m ∈ ℤ m > 0
a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km
k ∈ ℤ a = b + km

a = qm + r r = a mod m

a mod m = b mod m
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Congruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . Combining this with , we have 

, so . 

Suppose that . 
 

  
 

a, b, m ∈ ℤ m > 0
a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km
k ∈ ℤ a = b + km

a = qm + r r = a mod m a = b + km
b + km = qm + r b = (q − k)m + r

a mod m = b mod m
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Congruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . Combining this with , we have 

, so . By the uniqueness condition of the division
theorem, , so we have .
Suppose that . 

 
  

 

a, b, m ∈ ℤ m > 0
a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km
k ∈ ℤ a = b + km

a = qm + r r = a mod m a = b + km
b + km = qm + r b = (q − k)m + r

r = b mod m a mod m = r = b mod m
a mod m = b mod m
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Congruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . Combining this with , we have 

, so . By the uniqueness condition of the division
theorem, , so we have .
Suppose that . By the division theorem,  and 

 for some . 
  

 

a, b, m ∈ ℤ m > 0
a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km
k ∈ ℤ a = b + km

a = qm + r r = a mod m a = b + km
b + km = qm + r b = (q − k)m + r

r = b mod m a mod m = r = b mod m
a mod m = b mod m a = mq + (a mod m)

b = ms + (b mod m) q, s ∈ ℤ
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Congruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . Combining this with , we have 

, so . By the uniqueness condition of the division
theorem, , so we have .
Suppose that . By the division theorem,  and 

 for some . Then, 
  

 

a, b, m ∈ ℤ m > 0
a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km
k ∈ ℤ a = b + km

a = qm + r r = a mod m a = b + km
b + km = qm + r b = (q − k)m + r

r = b mod m a mod m = r = b mod m
a mod m = b mod m a = mq + (a mod m)

b = ms + (b mod m) q, s ∈ ℤ
a − b = (mq + (a mod m)) − (ms + (b mod m))
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Congruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . Combining this with , we have 

, so . By the uniqueness condition of the division
theorem, , so we have .
Suppose that . By the division theorem,  and 

 for some . Then, 
  

 

a, b, m ∈ ℤ m > 0
a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km
k ∈ ℤ a = b + km

a = qm + r r = a mod m a = b + km
b + km = qm + r b = (q − k)m + r

r = b mod m a mod m = r = b mod m
a mod m = b mod m a = mq + (a mod m)

b = ms + (b mod m) q, s ∈ ℤ
a − b = (mq + (a mod m)) − (ms + (b mod m)) = m(q − s) + (a mod m − b mod m)
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Congruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . Combining this with , we have 

, so . By the uniqueness condition of the division
theorem, , so we have .
Suppose that . By the division theorem,  and 

 for some . Then, 
  

, since . 

a, b, m ∈ ℤ m > 0
a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km
k ∈ ℤ a = b + km

a = qm + r r = a mod m a = b + km
b + km = qm + r b = (q − k)m + r

r = b mod m a mod m = r = b mod m
a mod m = b mod m a = mq + (a mod m)

b = ms + (b mod m) q, s ∈ ℤ
a − b = (mq + (a mod m)) − (ms + (b mod m)) = m(q − s) + (a mod m − b mod m)
= m(q − s) a mod m = b mod m
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Congruence and equality

Congruence property
Let  with .
Then,  if and only if .

Proof:
Suppose that . Then  by definition of congruence. So 
for some  by definition of divides. Therefore, . By the division theorem,
we can write  where . Combining this with , we have 

, so . By the uniqueness condition of the division
theorem, , so we have .
Suppose that . By the division theorem,  and 

 for some . Then, 
  

, since . Therefore,  and so .

a, b, m ∈ ℤ m > 0
a ≡ b (mod m) a mod m = b mod m

a ≡ b (mod m) m|a − b a − b = km
k ∈ ℤ a = b + km

a = qm + r r = a mod m a = b + km
b + km = qm + r b = (q − k)m + r

r = b mod m a mod m = r = b mod m
a mod m = b mod m a = mq + (a mod m)

b = ms + (b mod m) q, s ∈ ℤ
a − b = (mq + (a mod m)) − (ms + (b mod m)) = m(q − s) + (a mod m − b mod m)
= m(q − s) a mod m = b mod m m|(a − b) a ≡ b (mod m)
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The  function vs the  predicate
The  function takes any  and maps it to a remainder 

.

In other words,  places all integers that have the same
remainder modulo  into the same “group” (a.k.a. “congruence class”).

The  predicate compares  and returns true if and
only if  and  are in the same group according to the  function.

 mod m ≡ (mod m)
 mod m a ∈ ℤ

a mod m ∈ {0, 1, … , m − 1}
 mod m

m
≡ (mod m) a, b ∈ ℤ

a b  mod m
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Modular addition property

Modular addition property
Let  be a positive integer (  with ).
If  and , then .

m m ∈ ℤ m > 0
a ≡ b (mod m) c ≡ d (mod m) a + c ≡ b + d (mod m)
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Modular addition property

Modular addition property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . 

m m ∈ ℤ m > 0
a ≡ b (mod m) c ≡ d (mod m) a + c ≡ b + d (mod m)

a ≡ b (mod m) c ≡ d (mod m)

10
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Modular addition property

Modular addition property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and .

m m ∈ ℤ m > 0
a ≡ b (mod m) c ≡ d (mod m) a + c ≡ b + d (mod m)

a ≡ b (mod m) c ≡ d (mod m)
k j a − b = km c − d = jm
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Modular addition property

Modular addition property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and .
Adding these equations together, we get .

m m ∈ ℤ m > 0
a ≡ b (mod m) c ≡ d (mod m) a + c ≡ b + d (mod m)

a ≡ b (mod m) c ≡ d (mod m)
k j a − b = km c − d = jm

(a + c) − (b + d) = m(j + k)
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Modular addition property

Modular addition property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and .
Adding these equations together, we get .
Reapplying the definition of congruence, we get that 

.

m m ∈ ℤ m > 0
a ≡ b (mod m) c ≡ d (mod m) a + c ≡ b + d (mod m)

a ≡ b (mod m) c ≡ d (mod m)
k j a − b = km c − d = jm

(a + c) − (b + d) = m(j + k)

(a + c) ≡ (b + d) (mod m)
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Modular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

m m ∈ ℤ m > 0
a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)
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Modular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . 

 

 

m m ∈ ℤ m > 0
a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)

a ≡ b (mod m) c ≡ d (mod m)

11
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Modular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and .

 

 

m m ∈ ℤ m > 0
a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)

a ≡ b (mod m) c ≡ d (mod m)
k j a − b = km c − d = jm
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Modular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and .
So,  and . 

 

m m ∈ ℤ m > 0
a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)

a ≡ b (mod m) c ≡ d (mod m)
k j a − b = km c − d = jm

a = km + b c = jm + b
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Modular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and .
So,  and . Multiplying these equations together,
we get .

 

m m ∈ ℤ m > 0
a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)

a ≡ b (mod m) c ≡ d (mod m)
k j a − b = km c − d = jm

a = km + b c = jm + b
ac = (km + b)(jm + d) = kj + kmd + bjm + bdm2
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Modular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and .
So,  and . Multiplying these equations together,
we get .
Rearranging gives us . 

m m ∈ ℤ m > 0
a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)

a ≡ b (mod m) c ≡ d (mod m)
k j a − b = km c − d = jm

a = km + b c = jm + b
ac = (km + b)(jm + d) = kj + kmd + bjm + bdm2

ac − bd = m(kjm + kd + bj)

11
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Modular multiplication property

Modular multiplication property
Let  be a positive integer (  with ).
If  and , then .

Proof:
Suppose that   and  . By definition of
congruence, there are  and  such that  and .
So,  and . Multiplying these equations together,
we get .
Rearranging gives us . Reapplying the
definition of congruence, we get that .

m m ∈ ℤ m > 0
a ≡ b (mod m) c ≡ d (mod m) ac ≡ bd (mod m)

a ≡ b (mod m) c ≡ d (mod m)
k j a − b = km c − d = jm

a = km + b c = jm + b
ac = (km + b)(jm + d) = kj + kmd + bjm + bdm2

ac − bd = m(kjm + kd + bj)
ac ≡ bd (mod m)

11
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Example: a proof using modular arithmetic
Let , and prove that  or .n∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2
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Example: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

n∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

12
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Example: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

n∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n≡ 1 (mod 2) → ≡ 1 (mod 4)n2
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Example: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even). 

 
 

Case 2 (  is odd). 
 

 

n∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n≡ 1 (mod 2) → ≡ 1 (mod 4)n2

n

n
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Example: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even). Suppose .

 
 

Case 2 (  is odd). 
 

 

n∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n≡ 1 (mod 2) → ≡ 1 (mod 4)n2

n n≡ 0 (mod 2)

n
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Example: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even). Suppose .
Then  for some integer . 

 

Case 2 (  is odd). 
 

 

n∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n≡ 1 (mod 2) → ≡ 1 (mod 4)n2

n n≡ 0 (mod 2)
n = 2k k

n

12
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Example: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even). Suppose .
Then  for some integer . So 

. 

Case 2 (  is odd). 
 

 

n∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n≡ 1 (mod 2) → ≡ 1 (mod 4)n2

n n≡ 0 (mod 2)
n = 2k k

= (2k = 4n2 )2 k2

n
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Example: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even). Suppose .
Then  for some integer . So 

. Therefore, by definition
of congruence, .
Case 2 (  is odd). 

 

 

n∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n≡ 1 (mod 2) → ≡ 1 (mod 4)n2

n n≡ 0 (mod 2)
n = 2k k

= (2k = 4n2 )2 k2

≡ 0 (mod 4)n2

n
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Example: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even). Suppose .
Then  for some integer . So 

. Therefore, by definition
of congruence, .
Case 2 (  is odd). Suppose .
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= 16 ≡ 0 (mod 4)42

n≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n≡ 1 (mod 2) → ≡ 1 (mod 4)n2

n n≡ 0 (mod 2)
n = 2k k

= (2k = 4n2 )2 k2

≡ 0 (mod 4)n2

n n≡ 1 (mod 2)
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Example: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even). Suppose .
Then  for some integer . So 

. Therefore, by definition
of congruence, .
Case 2 (  is odd). Suppose .
Then  for some integer . 

 

n∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n≡ 1 (mod 2) → ≡ 1 (mod 4)n2

n n≡ 0 (mod 2)
n = 2k k

= (2k = 4n2 )2 k2

≡ 0 (mod 4)n2

n n≡ 1 (mod 2)
n = 2k + 1 k

12

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture12.html?print-pdf#/


Example: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even). Suppose .
Then  for some integer . So 

. Therefore, by definition
of congruence, .
Case 2 (  is odd). Suppose .
Then  for some integer . So 

  
. 

n∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n≡ 1 (mod 2) → ≡ 1 (mod 4)n2

n n≡ 0 (mod 2)
n = 2k k

= (2k = 4n2 )2 k2

≡ 0 (mod 4)n2

n n≡ 1 (mod 2)
n = 2k + 1 k

= (2k + 1 = 4 + 4k + 1n2 )2 k2 =
4( + k) + 1k2
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Example: a proof using modular arithmetic
Let , and prove that  or .

Let’s look at a few examples:

It looks like

Proof by cases:
Case 1 (  is even). Suppose .
Then  for some integer . So 

. Therefore, by definition
of congruence, .
Case 2 (  is odd). Suppose .
Then  for some integer . So 

  
. Therefore, by definition of

congruence, .

n∈ ℤ ≡ 0 (mod 4)n2 ≡ 1 (mod 4)n2

= 0 ≡ 0 (mod 4)02

= 1 ≡ 1 (mod 4)12

= 4 ≡ 0 (mod 4)22

= 9 ≡ 1 (mod 4)32

= 16 ≡ 0 (mod 4)42

n≡ 0 (mod 2) → ≡ 0 (mod 4)n2

n≡ 1 (mod 2) → ≡ 1 (mod 4)n2

n n≡ 0 (mod 2)
n = 2k k

= (2k = 4n2 )2 k2

≡ 0 (mod 4)n2

n n≡ 1 (mod 2)
n = 2k + 1 k

= (2k + 1 = 4 + 4k + 1n2 )2 k2 =
4( + k) + 1k2

≡ 1 (mod 4)n2
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Modular arithmetic and integer
representations
Unsigned, sign-magnitude, and two’s complement representation.

13
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Unsigned integer representation

Represent integer  as a sum of  powers of 2:
If  where each ,
then the representation is .

x n
x = ∑n− 1

i= 0 bi2i ∈ {0, 1}bi
…bn−1 b2b1b0

14
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Unsigned integer representation

Represent integer  as a sum of  powers of 2:
If  where each ,
then the representation is .

Examples:

So for :

x n
x = ∑n− 1

i= 0 bi2i ∈ {0, 1}bi
…bn−1 b2b1b0

99 = 64 + 32 + 2 + 1
18 = 16 + 2

n = 8
99 = 0110 0011
18 = 0001 0010
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Unsigned integer representation

Represent integer  as a sum of  powers of 2:
If  where each ,
then the representation is .

Examples:

So for :

x n
x = ∑n− 1

i= 0 bi2i ∈ {0, 1}bi
…bn−1 b2b1b0

99 = 64 + 32 + 2 + 1
18 = 16 + 2

n = 8
99 = 0110 0011
18 = 0001 0010

This works for unsigned
integers. How do we
represented signed integers?
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Sign-magnitude integer representation

If , represent  with  bits as follows:
Use the first bit as the sign (0 for positive and 1 for negative), and
the remaining  bits as the (unsigned) value.

Examples:

So for :

− < x <2n−1 2n−1 x n

n− 1

99 = 64 + 32 + 2 + 1
18 = 16 + 2

n = 8
  99 = 0110 0011
−18 = 1001 0010

15
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Sign-magnitude integer representation

If , represent  with  bits as follows:
Use the first bit as the sign (0 for positive and 1 for negative), and
the remaining  bits as the (unsigned) value.

Examples:

So for :

− < x <2n−1 2n−1 x n

n− 1

99 = 64 + 32 + 2 + 1
18 = 16 + 2

n = 8
  99 = 0110 0011
−18 = 1001 0010
  81 = 0101 0001

The problem with this representation is
that our standard arithmetic algorithms
no longer work, e.g., adding the
representation of -18 and 99 doesn’t
give the representation of 81.

15
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Two’s complement integer representation

Represent  with  bits as follows:
If , use the -bit unsigned representation of .
If , use the -bit unsigned representation of .

x n
0 ≤ x < 2n− 1 n x
− ≤ x < 02n− 1 n − |x|2n

16
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Two’s complement integer representation

Represent  with  bits as follows:
If , use the -bit unsigned representation of .
If , use the -bit unsigned representation of .

Key property:
Two’s complement representation of any number  is equivalent to 

 so arithmetic works .

x n
0 ≤ x < 2n− 1 n x
− ≤ x < 02n− 1 n − |x|2n

y
y mod 2n  mod 2n
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Two’s complement integer representation

Represent  with  bits as follows:
If , use the -bit unsigned representation of .
If , use the -bit unsigned representation of .

Key property:
Two’s complement representation of any number  is equivalent to 

 so arithmetic works .

Examples: So for :

x n
0 ≤ x < 2n− 1 n x
− ≤ x < 02n− 1 n − |x|2n

y
y mod 2n  mod 2n

99 = 64 + 32 + 2 + 1
18 = 16 + 2

− 18 = 256 − 18 = 238 = 128 + 64 + 32 + 8 + 4 + 228

81 = 64 + 16 + 1

n = 8
  99 = 0110 0011
−18 = 1110 1110
  81 = 0101 0001

16
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Computing the two’s complement representation
For ,  is represented using the -bit unsigned
representation of . To compute this value:

Compute the -bit unsigned representation of .
Flip the bits of  to get the representation of .
Add 1 to get .
This works because  is all 1s, which represents . So 

 and .

− ≤ x < 02n− 1 x n
− |x|2n

n |x|
|x| − 1 − |x|2n

− |x|2n

x + x⎯⎯⎯ − 12n

= − 1 − xx⎯⎯⎯ 2n + 1 = − xx⎯⎯⎯ 2n

17
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Computing the two’s complement representation
For ,  is represented using the -bit unsigned
representation of . To compute this value:

Compute the -bit unsigned representation of .
Flip the bits of  to get the representation of .
Add 1 to get .
This works because  is all 1s, which represents . So 

 and .

Example: -18 in 8-bit two’s complement

− ≤ x < 02n− 1 x n
− |x|2n

n |x|
|x| − 1 − |x|2n

− |x|2n

x + x⎯⎯⎯ − 12n

= − 1 − xx⎯⎯⎯ 2n + 1 = − xx⎯⎯⎯ 2n
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Computing the two’s complement representation
For ,  is represented using the -bit unsigned
representation of . To compute this value:

Compute the -bit unsigned representation of .
Flip the bits of  to get the representation of .
Add 1 to get .
This works because  is all 1s, which represents . So 

 and .

Example: -18 in 8-bit two’s complement
18 in 8-bit unsigned: 

− ≤ x < 02n− 1 x n
− |x|2n

n |x|
|x| − 1 − |x|2n

− |x|2n

x + x⎯⎯⎯ − 12n

= − 1 − xx⎯⎯⎯ 2n + 1 = − xx⎯⎯⎯ 2n

0001 0010
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Computing the two’s complement representation
For ,  is represented using the -bit unsigned
representation of . To compute this value:

Compute the -bit unsigned representation of .
Flip the bits of  to get the representation of .
Add 1 to get .
This works because  is all 1s, which represents . So 

 and .

Example: -18 in 8-bit two’s complement
18 in 8-bit unsigned: 
Flip the bits: 

− ≤ x < 02n− 1 x n
− |x|2n

n |x|
|x| − 1 − |x|2n

− |x|2n

x + x⎯⎯⎯ − 12n

= − 1 − xx⎯⎯⎯ 2n + 1 = − xx⎯⎯⎯ 2n

0001 0010
1110 1101
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Computing the two’s complement representation
For ,  is represented using the -bit unsigned
representation of . To compute this value:

Compute the -bit unsigned representation of .
Flip the bits of  to get the representation of .
Add 1 to get .
This works because  is all 1s, which represents . So 

 and .

Example: -18 in 8-bit two’s complement
18 in 8-bit unsigned: 
Flip the bits: 
Add 1: 

− ≤ x < 02n− 1 x n
− |x|2n

n |x|
|x| − 1 − |x|2n

− |x|2n

x + x⎯⎯⎯ − 12n

= − 1 − xx⎯⎯⎯ 2n + 1 = − xx⎯⎯⎯ 2n

0001 0010
1110 1101

1110 1110
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Applications of modular arithmetic
Hashing, pseudo-random numbers, ciphers.

18
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Hashing

Problem:
We want to map a small number of data values from a large domain 

 into a small set of locations  to be
able to quickly check if a value is present.

Solution:
Compute  for a prime  close to .
Or, compute  for a prime  close to .

This approach depends on all of the bits of data the data.
Helps avoid collisions due to similar values.
But need to manage them if they occur.

{0, 1, … , M − 1} {0, 1, … , n− 1}

hash(x) = x mod p p n
hash(x) = ax + b mod p p n

19
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Pseudo-random number generation

Choose  randomly and  carefully to produce a sequence of ’s.

Linear Congruential method
= (a + c) mod mxn+ 1 xn

x0 a, c, m xn

20
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Pseudo-random number generation

Choose  randomly and  carefully to produce a sequence of ’s.

Example
 from BSD

Linear Congruential method
= (a + c) mod mxn+ 1 xn

x0 a, c, m xn

a = 1103515245, c = 12345, m = 231

= 311x0
= 1743353508, = 1197845517, = 1069836226, …x1 x2 x3

20
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Simple ciphers

Treat letters as numbers: A = 0, B = 1, …
Ceasar or shi! cipher

f (p) = (p + k) mod 26
(p) = (p − k) mod 26f − 1

More general version
f (p) = (ap + b) mod 26

(p) = ( (p − b)) mod 26f − 1 a− 1

21
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Summary
Modular arithmetic is arithmetic over a finite domain.

Key notions are divisibility and congruence modulo .
Thanks to addition and multiplication properties, modular arithmetic
supports familiar algebraic manipulations such as adding and
multiplying together  equations.

Modular arithmetic is the basis of computing.
Used with two’s complement representation to implement computer
arithmetic.
Also used in hashing, pseudo-random number generation, and
cryptography.

m

≡ (mod m)

22
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