
CSE 311 Lecture 05:
Canonical Forms and
Predicate Logic
Emina Torlak and Kevin Zatloukal

1

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Topics
Boolean algebra

A review of with another end-to-end example.
Canonical forms

Standard forms for a Boolean expression.
Predicate logic

Extending propositional logic with predicates and quantifiers.

Lecture 04

2

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture04.html
http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Boolean algebra
A review of with another end-to-end example.Lecture 04

3

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture04.html
http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Boolean algebra is a notation for combinational logic
Think of it as a notation for propositional logic used in circuit design.

Boolean algebra consists of the following elements and operations:

a set of elements ,
binary operations ,
a unary operation .

Boolean operations satisfy the following axioms for any :

Closure

Commutativity

Associativity

Distributivity

Identity

Complementarity

Null

Idempotency

Involution

B = {0, 1}
{+, ⋅}
{ }′

These correspond to the truth
values , and the logical
connectives .

{", #}
∨, ∧, ¬

a, b, c ∈ B

a + b ∈ B
a ⋅ b ∈ B

a + b = b + a
a ⋅ b = b ⋅ a

a + (b + c) = (a + b) + c
a ⋅ (b ⋅ c) = (a ⋅ b) ⋅ c

a + (b ⋅ c) = (a + b) ⋅ (a + c)
a ⋅ (b + c) = (a ⋅ b) + (a ⋅ c)

a + 0 = a
a ⋅ 1 = a

a + = 1a′

a ⋅ = 0a′

a + 1 = 1
a ⋅ 0 = 0

a + a = a
a ⋅ a = a

(= aa′)′

4

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to an adder circuit
Binary addition is a basic operation implemented by every computer.

It works just like decimal addition: we add numbers digit by digit, from
least to most significant, keeping track of the current sum and carry.

carry 0
input A 101
input B + 001
sum

5

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to an adder circuit
Binary addition is a basic operation implemented by every computer.

It works just like decimal addition: we add numbers digit by digit, from
least to most significant, keeping track of the current sum and carry.

carry 10
input A 101
input B + 001
sum 0

5

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to an adder circuit
Binary addition is a basic operation implemented by every computer.

It works just like decimal addition: we add numbers digit by digit, from
least to most significant, keeping track of the current sum and carry.

carry 010
input A 101
input B + 001
sum 10

5

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to an adder circuit
Binary addition is a basic operation implemented by every computer.

It works just like decimal addition: we add numbers digit by digit, from
least to most significant, keeping track of the current sum and carry.

carry 0010
input A 101
input B + 001
sum 110

5

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to an adder circuit
Binary addition is a basic operation implemented by every computer.

It works just like decimal addition: we add numbers digit by digit, from
least to most significant, keeping track of the current sum and carry.

carry 0010
input A 101
input B + 001
sum 110

We can implement -bit addition by chaining together 1-bit adders:
A B

1-bit adder

S

Cout Cin

1 1

1-bit adder

0

1
0

0 0

1-bit adder

1

0

1 0

1-bit adder

1

0

n n

5

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to an adder circuit
Binary addition is a basic operation implemented by every computer.

It works just like decimal addition: we add numbers digit by digit, from
least to most significant, keeping track of the current sum and carry.

carry 0010
input A 101
input B + 001
sum 110

We can implement -bit addition by chaining together 1-bit adders:
A B

1-bit adder

S

Cout Cin

1 1

1-bit adder

0

1
0

0 0

1-bit adder

1

0

1 0

1-bit adder

1

0

Let’s implement the 1-bit adder circuit!

n n

5

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to logic via a truth table
Inputs: (input bits and carry-in)
Outputs: (sum and carry out)

A B

1-bit adder

S

Cout Cin

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A, B, Cin
S, Cout

A B Cin Cout S S =
=Cout

6

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to logic via a truth table
Inputs: (input bits and carry-in)
Outputs: (sum and carry out)

A B

1-bit adder

S

Cout Cin

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A, B, Cin
S, Cout

A B Cin Cout S S = ⋅ ⋅A′ B′ Cin

=Cout

6

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to logic via a truth table
Inputs: (input bits and carry-in)
Outputs: (sum and carry out)

A B

1-bit adder

S

Cout Cin

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A, B, Cin
S, Cout

A B Cin Cout S S = ⋅ ⋅A′ B′ Cin + ⋅ B ⋅A′ C ′
in

=Cout

6

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to logic via a truth table
Inputs: (input bits and carry-in)
Outputs: (sum and carry out)

A B

1-bit adder

S

Cout Cin

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A, B, Cin
S, Cout

A B Cin Cout S S = ⋅ ⋅A′ B′ Cin + ⋅ B ⋅A′ C ′
in + A ⋅ ⋅B′ C ′

in

=Cout

6

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to logic via a truth table
Inputs: (input bits and carry-in)
Outputs: (sum and carry out)

A B

1-bit adder

S

Cout Cin

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A, B, Cin
S, Cout

A B Cin Cout S S = ⋅ ⋅A′ B′ Cin + ⋅ B ⋅A′ C ′
in + A ⋅ ⋅B′ C ′

in + A ⋅ B ⋅ Cin

=Cout

6

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to logic via a truth table
Inputs: (input bits and carry-in)
Outputs: (sum and carry out)

A B

1-bit adder

S

Cout Cin

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A, B, Cin
S, Cout

A B Cin Cout S S = ⋅ ⋅A′ B′ Cin + ⋅ B ⋅A′ C ′
in + A ⋅ ⋅B′ C ′

in + A ⋅ B ⋅ Cin

=Cout ⋅ B ⋅A′ Cin

6

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to logic via a truth table
Inputs: (input bits and carry-in)
Outputs: (sum and carry out)

A B

1-bit adder

S

Cout Cin

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A, B, Cin
S, Cout

A B Cin Cout S S = ⋅ ⋅A′ B′ Cin + ⋅ B ⋅A′ C ′
in + A ⋅ ⋅B′ C ′

in + A ⋅ B ⋅ Cin

=Cout ⋅ B ⋅A′ Cin + A ⋅ ⋅B′ Cin

6

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to logic via a truth table
Inputs: (input bits and carry-in)
Outputs: (sum and carry out)

A B

1-bit adder

S

Cout Cin

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A, B, Cin
S, Cout

A B Cin Cout S S = ⋅ ⋅A′ B′ Cin + ⋅ B ⋅A′ C ′
in + A ⋅ ⋅B′ C ′

in + A ⋅ B ⋅ Cin

=Cout ⋅ B ⋅A′ Cin + A ⋅ ⋅B′ Cin + A ⋅ B ⋅ C ′
in

6

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: from spec to logic via a truth table
Inputs: (input bits and carry-in)
Outputs: (sum and carry out)

A B

1-bit adder

S

Cout Cin

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A, B, Cin
S, Cout

A B Cin Cout S S = ⋅ ⋅A′ B′ Cin + ⋅ B ⋅A′ C ′
in + A ⋅ ⋅B′ C ′

in + A ⋅ B ⋅ Cin

=Cout ⋅ B ⋅A′ Cin + A ⋅ ⋅B′ Cin + A ⋅ B ⋅ C ′
in + A ⋅ B ⋅ Cin

6

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: apply theorems to simplify the logic

Idempotence
Commutativity
Commutativity
Distributivity
Complementarity
Identity
Idempotence
Commutativity
Commutativity
Distributivity
Complementarity
Identity

Cout = ⋅ B ⋅ + A ⋅ ⋅ + A ⋅ B ⋅ + A ⋅ B ⋅A′ Cin B′ Cin C ′
in Cin

= ⋅ B ⋅ + A ⋅ ⋅ + A ⋅ B ⋅ + A ⋅ B ⋅ + A ⋅ B ⋅A′ Cin B′ Cin C ′
in Cin Cin

= A ⋅ B ⋅ + ⋅ B ⋅ + A ⋅ ⋅ + A ⋅ B ⋅ + A ⋅ B ⋅Cin A′ Cin B′ Cin C ′
in Cin

= B ⋅ ⋅ A + B ⋅ ⋅ + A ⋅ ⋅ + A ⋅ B ⋅ + A ⋅ B ⋅Cin Cin A′ B′ Cin C ′
in Cin

= B ⋅ ⋅ (A +) + A ⋅ ⋅ + A ⋅ B ⋅ + A ⋅ B ⋅Cin A′ B′ Cin C ′
in Cin

= B ⋅ ⋅ 1 + A ⋅ ⋅ + A ⋅ B ⋅ + A ⋅ B ⋅Cin B′ Cin C ′
in Cin

= B ⋅ + A ⋅ ⋅ + A ⋅ B ⋅ + A ⋅ B ⋅Cin B′ Cin C ′
in Cin

= B ⋅ + A ⋅ ⋅ + A ⋅ B ⋅ + A ⋅ B ⋅ + A ⋅ B ⋅Cin B′ Cin C ′
in Cin Cin

= B ⋅ + A ⋅ B ⋅ + A ⋅ ⋅ + A ⋅ B ⋅ + A ⋅ B ⋅Cin Cin B′ Cin Cin C ′
in

= B ⋅ + A ⋅ ⋅ B + A ⋅ ⋅ + A ⋅ B ⋅ + A ⋅ B ⋅Cin Cin Cin B′ Cin C ′
in

= B ⋅ + A ⋅ ⋅ (B +) + A ⋅ B ⋅ (+)Cin Cin B′ Cin C ′
in

= B ⋅ + A ⋅ ⋅ 1 + A ⋅ B ⋅ 1Cin Cin
= B ⋅ + A ⋅ + A ⋅ BCin Cin

7

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: map the logic to the available gates

A

B Cout

Cin

A
B S
Cin

= B ⋅ + A ⋅ + A ⋅ BCout Cin Cin

 mapped to AND, OR, and
NOT gates.
Cout

S = ⋅ ⋅ + ⋅ B ⋅ + A ⋅ ⋅ + A ⋅ B ⋅A′ B′ Cin A′ C′
in B′ C′

in Cin

 mapped to an XOR gate:
.

S
S ≡ A ⊕ B ⊕ Cin

8

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: the recipe for translating a spec to a circuit
To translate a specification to a circuit:

1. Write the truth table (and, optionally, the program) for the spec.
2. Write the Boolean expression for the output bits.
3. Minimize the Boolean expressions for the output bits.
4. Map the minimized expressions to the available logic gates.

9

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: the recipe for translating a spec to a circuit
To translate a specification to a circuit:

1. Write the truth table (and, optionally, the program) for the spec.
2. Write the Boolean expression for the output bits.
3. Minimize the Boolean expressions for the output bits.
4. Map the minimized expressions to the available logic gates.

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

A B C F

9

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: the recipe for translating a spec to a circuit
To translate a specification to a circuit:

1. Write the truth table (and, optionally, the program) for the spec.
2. Write the Boolean expression for the output bits.
3. Minimize the Boolean expressions for the output bits.
4. Map the minimized expressions to the available logic gates.

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Commutativity
Distributivity
Commutativity
Complementarity
Identity

A B C F F = ⋅ B ⋅ + ⋅ B ⋅ C + A ⋅ ⋅ C + A ⋅ B ⋅ CA′ C ′ A′ B′

= ⋅ B ⋅ + ⋅ B ⋅ C + A ⋅ C ⋅ + A ⋅ C ⋅ BA′ C ′ A′ B′

= ⋅ B ⋅ (+ C) + A ⋅ C ⋅ (+ B)A′ C ′ B′

= ⋅ B ⋅ (C +) + A ⋅ C ⋅ (B +)A′ C ′ B′

= ⋅ B ⋅ 1 + A ⋅ C ⋅ 1A′

= ⋅ B + A ⋅ CA′

9

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Example: the recipe for translating a spec to a circuit
To translate a specification to a circuit:

1. Write the truth table (and, optionally, the program) for the spec.
2. Write the Boolean expression for the output bits.
3. Minimize the Boolean expressions for the output bits.
4. Map the minimized expressions to the available logic gates.

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Commutativity
Distributivity
Commutativity
Complementarity
Identity

A
B

C

F

A B C F F = ⋅ B ⋅ + ⋅ B ⋅ C + A ⋅ ⋅ C + A ⋅ B ⋅ CA′ C ′ A′ B′

= ⋅ B ⋅ + ⋅ B ⋅ C + A ⋅ C ⋅ + A ⋅ C ⋅ BA′ C ′ A′ B′

= ⋅ B ⋅ (+ C) + A ⋅ C ⋅ (+ B)A′ C ′ B′

= ⋅ B ⋅ (C +) + A ⋅ C ⋅ (B +)A′ C ′ B′

= ⋅ B ⋅ 1 + A ⋅ C ⋅ 1A′

= ⋅ B + A ⋅ CA′

9

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Canonical forms
Standard forms for a Boolean expression.

10

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Why do we need canonical forms?

A truth table is the unique signature of a Boolean function.
It captures the semantics (meaning) of the function.

The same truth table can have many realizations in Boolean algebra.
One function can have many different syntactic representations.
Depends on how good we are at Boolean simplification.

Canonical forms are standard form for a Boolean expression.
We all come up with the same expression.
Also used internally by theorem provers.

We will cover two useful canonical forms.
Sum-of-products form.
Product-of-sums form.

11

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Sum-of-products canonical form
Also known as …

Disjunctive Normal Form (DNF)
Minterm Expansion

To convert a truth table to sum-of-products:
 Read the rows with true (1) output.
 Convert to Boolean algebra.
 Add the minterms together.

0 0 0 0
0 0 1 0
0 1 0 1 010
0 1 1 1 011
1 0 0 0
1 0 1 1 101
1 1 0 0
1 1 1 1 111

A B C F

12

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Sum-of-products canonical form
Also known as …

Disjunctive Normal Form (DNF)
Minterm Expansion

To convert a truth table to sum-of-products:
 Read the rows with true (1) output.
 Convert to Boolean algebra.
 Add the minterms together.

0 0 0 0
0 0 1 0
0 1 0 1 010
0 1 1 1 011
1 0 0 0
1 0 1 1 101
1 1 0 0
1 1 1 1 111

A B C F

BA′ C ′

BCA′

A CB′

ABC

12

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Sum-of-products canonical form
Also known as …

Disjunctive Normal Form (DNF)
Minterm Expansion

To convert a truth table to sum-of-products:
 Read the rows with true (1) output.
 Convert to Boolean algebra.
 Add the minterms together.

0 0 0 0
0 0 1 0
0 1 0 1 010
0 1 1 1 011
1 0 0 0
1 0 1 1 101
1 1 0 0
1 1 1 1 111

 A B C F

BA′ C ′

BCA′

A CB′

ABC

F = B + BC + A C + ABCA′ C ′ A′ B′

12

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Sum-of-products canonical form: properties

Product term (or minterm)
Conjunction of literals, which are variables or their negations.
Represents an input combination for which output is true.
Each variable appears exactly once, true or negated (but not both).

minterms
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

 in canonical form

canonical form minimal form

A B C F

BA′ C ′

BCA′

A CB′

ABC

F
F = B + BC + A C + ABCA′ C ′ A′ B′

≠
F = B + BC + A C + ABCA′ C ′ A′ B′

= B(C +) + AC(B +)A′ C ′ B′

= B + ACA′

13

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Product-of-sums canonical form
Also known as …

Conjunctive Normal Form (CNF)
Maxterm Expansion

To convert a truth table to product-of-sums:
 Read the rows with false (0) output.
 Negate all bits.
 Convert to Boolean algebra.
 Multiply the maxterms together.

0 0 0 0 000
0 0 1 0 001
0 1 0 1
0 1 1 1
1 0 0 0 100
1 0 1 1
1 1 0 0 110
1 1 1 1

A B C F

14

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Product-of-sums canonical form
Also known as …

Conjunctive Normal Form (CNF)
Maxterm Expansion

To convert a truth table to product-of-sums:
 Read the rows with false (0) output.
 Negate all bits.
 Convert to Boolean algebra.
 Multiply the maxterms together.

0 0 0 0 000 111
0 0 1 0 001 110
0 1 0 1
0 1 1 1
1 0 0 0 100 011
1 0 1 1
1 1 0 0 110 001
1 1 1 1

A B C F

14

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Product-of-sums canonical form
Also known as …

Conjunctive Normal Form (CNF)
Maxterm Expansion

To convert a truth table to product-of-sums:
 Read the rows with false (0) output.
 Negate all bits.
 Convert to Boolean algebra.
 Multiply the maxterms together.

0 0 0 0 000 111
0 0 1 0 001 110
0 1 0 1
0 1 1 1
1 0 0 0 100 011
1 0 1 1
1 1 0 0 110 001
1 1 1 1

A B C F
A + B + C
A + B + C ′

+ B + CA′

+ + CA′ B′

14

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Product-of-sums canonical form
Also known as …

Conjunctive Normal Form (CNF)
Maxterm Expansion

To convert a truth table to product-of-sums:
 Read the rows with false (0) output.
 Negate all bits.
 Convert to Boolean algebra.
 Multiply the maxterms together.

0 0 0 0 000 111
0 0 1 0 001 110
0 1 0 1
0 1 1 1
1 0 0 0 100 011
1 0 1 1
1 1 0 0 110 001
1 1 1 1

A B C F
A + B + C
A + B + C ′

+ B + CA′

+ + CA′ B′

F = (A + B + C)(A + B +)C ′

(+ B + C)(+ + C)A′ A′ B′

14

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Product-of-sums canonical form: why does it work?

What we know …
 by Involution.

How to get a minterm expansion for .

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

(= FF ′)′

F ′

A B C F = + C + A + ABF ′ A′B′C ′ A′B′ B′C ′ C ′

15

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Product-of-sums canonical form: why does it work?

What we know …
 by Involution.

How to get a minterm expansion for .

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Taking the complement of both sides

(= FF ′)′

F ′

A B C F = + C + A + ABF ′ A′B′C ′ A′B′ B′C ′ C ′

(= (+ C + A + ABF ′)′ A′B′C ′ A′B′ B′C ′ C ′)′

15

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Product-of-sums canonical form: why does it work?

What we know …
 by Involution.

How to get a minterm expansion for .

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

Taking the complement of both sides

Using Involution and DeMorgan Laws

(= FF ′)′

F ′

A B C F = + C + A + ABF ′ A′B′C ′ A′B′ B′C ′ C ′

(= (+ C + A + ABF ′)′ A′B′C ′ A′B′ B′C ′ C ′)′

F = ((C (A (ABA′B′C ′)′ A′B′)′ B′C ′)′ C ′)′

(A + B + C)(A + B +)(+ B + C)(+ + C)C ′ A′ A′ B′

15

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Product-of-sums canonical form: properties

Sum term (or maxterm)
Disjunction of literals, which are variables or their negations.
Represents an input combination for which output is false.
Each variable appears exactly once, true or negated (but not both).

maxterms
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

 in canonical form

canonical form minimal form

A B C F
A + B + C
A + B + C ′

+ B + CA′

+ + CA′ B′

F
F = (A + B + C)(A + B +)(+ B + C)(+ + C)C ′ A′ A′ B′

≠
F = (A + B + C)(A + B +)(+ B + C)(+ + C)C ′ A′ A′ B′

= (A + B + C)(+ C + B)C ′ A′ B′

= (A + B)(+ C)A′

16

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Predicate logic
Extending propositional logic with predicates and quantifiers.

17

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Predicate logic versus propositional logic

Propositional logic
“If Garfield is an orange cat and likes lasagna, then
he has black stripes.”

Predicate logic
“All positive integers ​ satisfy ​​ ​​.”x, y, z + ≠x3 y3 z3

Predicate logic lets us express complex propositions in
terms of their constituent parts (atomic propositions)
joined by connectives. Predicate logic lets us express
how propositions depend on the objects they mention.

18

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Key notions in predicate logic

Syntax
Predicate logic extends propositional logic with two key
constructs: predicates and quantifiers ().

Semantics
We define the meaning of formulas in predicate logic with
respect to a domain of discourse.

∃, ∀

19

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Predicates

Predicate is a function that returns a truth value.
Cat(x) “x is a cat”
Prime(x) “x is prime”
HasTaken(x, y) “student x has taken course y”
LessThan(x, y) “x < y”
Sum(x, y, z) “x + y = z”
GreaterThan5(x) “x > 5”
HasNChars(s, n) “string s has length n”

Predicates can have varying arity (numbers of arguments).

::=
::=

::=
::=

::=
::=
::=

20

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Domain of discourse
To give meaning to predicates in a formula, we define a set of objects
that those predicates can take as input.

This set of objects is called the domain of discourse for a formula.

For each of the following, what might the domain be?
“x is a cat”, “x barks”, “x ruined my couch”

“x is prime”, “x = 0”, “x < 0”, “x is a power of two”

“student x has taken course y” “x is a pre-req for z”

21

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Domain of discourse
To give meaning to predicates in a formula, we define a set of objects
that those predicates can take as input.

This set of objects is called the domain of discourse for a formula.

For each of the following, what might the domain be?
“x is a cat”, “x barks”, “x ruined my couch”
“mammals” or “sentient beings” or “cats and dogs” or …
“x is prime”, “x = 0”, “x < 0”, “x is a power of two”

“student x has taken course y” “x is a pre-req for z”

21

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Domain of discourse
To give meaning to predicates in a formula, we define a set of objects
that those predicates can take as input.

This set of objects is called the domain of discourse for a formula.

For each of the following, what might the domain be?
“x is a cat”, “x barks”, “x ruined my couch”
“mammals” or “sentient beings” or “cats and dogs” or …
“x is prime”, “x = 0”, “x < 0”, “x is a power of two”
“numbers” or “integers” or “integers greater than 5” or …
“student x has taken course y” “x is a pre-req for z”

21

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Domain of discourse
To give meaning to predicates in a formula, we define a set of objects
that those predicates can take as input.

This set of objects is called the domain of discourse for a formula.

For each of the following, what might the domain be?
“x is a cat”, “x barks”, “x ruined my couch”
“mammals” or “sentient beings” or “cats and dogs” or …
“x is prime”, “x = 0”, “x < 0”, “x is a power of two”
“numbers” or “integers” or “integers greater than 5” or …
“student x has taken course y” “x is a pre-req for z”
“students and courses” or “university entities” or …

21

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Quantifiers

Quantifiers let us talk about all or some objects in the domain.

 is true for every in the domain.
Read as “for all , ”.
Called the universal quantifier.

There is an in the domain for which is true.
Read as “there exists , ”.
Called the existential quantifier.

∀x. P(x)
P(x) x

x P(x)

∃x. P(x)
x P(x)

x P(x)

22

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Universal quantifier

 is true for every in the domain.
Examples: are these true?

∀
∀x. P(x)

P(x) x

∀x. Odd(x)
∀x. LessThan5(x)

23

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Universal quantifier

 is true for every in the domain.
Examples: are these true?

Depends on the domain.

 Integers Odd Integers
True False True
True False False

∀
∀x. P(x)

P(x) x

∀x. Odd(x)
∀x. LessThan5(x)

{−3, 3}
∀x. Odd(x)
∀x. LessThan5(x)

23

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Universal quantifier

 is true for every in the domain.
Examples: are these true?

Depends on the domain.

 Integers Odd Integers
True False True
True False False

You can think of as conjunction over all objects in the
domain.

over is the conjunction
over integers is the infinite conjunction

∀
∀x. P(x)

P(x) x

∀x. Odd(x)
∀x. LessThan5(x)

{−3, 3}
∀x. Odd(x)
∀x. LessThan5(x)

∀x. P(x)

∀x. Odd(x)
{−3, 3} Odd(−3) ∧ Odd(3)

… ∧ Odd(−1) ∧ Odd(0) ∧ Odd(1) ∧ …
23

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Existential quantifier

There is an in the domain for which is true.
Examples: are these true?

∃
∃x. P(x)

x P(x)

∃x. Odd(x)
∃x. LessThan5(x)

24

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Existential quantifier

There is an in the domain for which is true.
Examples: are these true?

Depends on the domain.

 Integers Positive Multiples of 5
True True True
True True False

∃
∃x. P(x)

x P(x)

∃x. Odd(x)
∃x. LessThan5(x)

{−3, 3}
∃x. Odd(x)
∃x. LessThan5(x)

24

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Existential quantifier

There is an in the domain for which is true.
Examples: are these true?

Depends on the domain.

 Integers Positive Multiples of 5
True True True
True True False

You can think of as disjunction over all objects in the
domain.

over is the disjunction
over integers is the infinite disjunction

∃
∃x. P(x)

x P(x)

∃x. Odd(x)
∃x. LessThan5(x)

{−3, 3}
∃x. Odd(x)
∃x. LessThan5(x)

∃x. P(x)

∃x. Odd(x)
{−3, 3} Odd(−3) ∨ Odd(3)

… ∨ Odd(−1) ∨ Odd(0) ∨ Odd(1) ∨ …
24

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Statements with quantifiers
Just like with propositional logic, we need to define variables (this time
predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

∃x. Even(x)
∀x. Odd(x)
∀x. Even(x) ∨ Odd(x)
∃x. Even(x) ∧ Odd(x)
∀x. Greater(x + 1, x)
∃x. Even(x) ∧ Prime(x)

Domain of discourse
Positive integers

Predicate definitions
Even(x) “x is even”
Odd(x) “x is odd”
Prime(x) “x is prime”
Greater(x, y) “x > y”
Equal(x, y) “x = y”
Sum(x, y, z) “z = x + y”

:=
:=

:=
:=

:=
:=

25

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Statements with quantifiers
Just like with propositional logic, we need to define variables (this time
predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

T∃x. Even(x)
∀x. Odd(x)
∀x. Even(x) ∨ Odd(x)
∃x. Even(x) ∧ Odd(x)
∀x. Greater(x + 1, x)
∃x. Even(x) ∧ Prime(x)

Domain of discourse
Positive integers

Predicate definitions
Even(x) “x is even”
Odd(x) “x is odd”
Prime(x) “x is prime”
Greater(x, y) “x > y”
Equal(x, y) “x = y”
Sum(x, y, z) “z = x + y”

:=
:=

:=
:=

:=
:=

25

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Statements with quantifiers
Just like with propositional logic, we need to define variables (this time
predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

T
F

∃x. Even(x)
∀x. Odd(x)
∀x. Even(x) ∨ Odd(x)
∃x. Even(x) ∧ Odd(x)
∀x. Greater(x + 1, x)
∃x. Even(x) ∧ Prime(x)

Domain of discourse
Positive integers

Predicate definitions
Even(x) “x is even”
Odd(x) “x is odd”
Prime(x) “x is prime”
Greater(x, y) “x > y”
Equal(x, y) “x = y”
Sum(x, y, z) “z = x + y”

:=
:=

:=
:=

:=
:=

25

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Statements with quantifiers
Just like with propositional logic, we need to define variables (this time
predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

T
F
T

∃x. Even(x)
∀x. Odd(x)
∀x. Even(x) ∨ Odd(x)
∃x. Even(x) ∧ Odd(x)
∀x. Greater(x + 1, x)
∃x. Even(x) ∧ Prime(x)

Domain of discourse
Positive integers

Predicate definitions
Even(x) “x is even”
Odd(x) “x is odd”
Prime(x) “x is prime”
Greater(x, y) “x > y”
Equal(x, y) “x = y”
Sum(x, y, z) “z = x + y”

:=
:=

:=
:=

:=
:=

25

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Statements with quantifiers
Just like with propositional logic, we need to define variables (this time
predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

T
F
T
F

∃x. Even(x)
∀x. Odd(x)
∀x. Even(x) ∨ Odd(x)
∃x. Even(x) ∧ Odd(x)
∀x. Greater(x + 1, x)
∃x. Even(x) ∧ Prime(x)

Domain of discourse
Positive integers

Predicate definitions
Even(x) “x is even”
Odd(x) “x is odd”
Prime(x) “x is prime”
Greater(x, y) “x > y”
Equal(x, y) “x = y”
Sum(x, y, z) “z = x + y”

:=
:=

:=
:=

:=
:=

25

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Statements with quantifiers
Just like with propositional logic, we need to define variables (this time
predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

T
F
T
F
T

∃x. Even(x)
∀x. Odd(x)
∀x. Even(x) ∨ Odd(x)
∃x. Even(x) ∧ Odd(x)
∀x. Greater(x + 1, x)
∃x. Even(x) ∧ Prime(x)

Domain of discourse
Positive integers

Predicate definitions
Even(x) “x is even”
Odd(x) “x is odd”
Prime(x) “x is prime”
Greater(x, y) “x > y”
Equal(x, y) “x = y”
Sum(x, y, z) “z = x + y”

:=
:=

:=
:=

:=
:=

25

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Statements with quantifiers
Just like with propositional logic, we need to define variables (this time
predicates). And we must also now define a domain of discourse.

What is the truth value of these statements?

T
F
T
F
T
T

∃x. Even(x)
∀x. Odd(x)
∀x. Even(x) ∨ Odd(x)
∃x. Even(x) ∧ Odd(x)
∀x. Greater(x + 1, x)
∃x. Even(x) ∧ Prime(x)

Domain of discourse
Positive integers

Predicate definitions
Even(x) “x is even”
Odd(x) “x is odd”
Prime(x) “x is prime”
Greater(x, y) “x > y”
Equal(x, y) “x = y”
Sum(x, y, z) “z = x + y”

:=
:=

:=
:=

:=
:=

25

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Predicate logic to English
Translate the following statements to English

∀x. ∃y. Greater(y, x)

∀x. ∃y. Greater(x, y)

∀x. ∃y. Greater(y, x) ∧ Prime(y)

∀x. Prime(x) → (Equal(x, 2) ∨ Odd(x))

∃x. ∃y. Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)

Domain of discourse
Positive integers

Predicate definitions
Even(x) “x is even”
Odd(x) “x is odd”
Prime(x) “x is prime”
Greater(x, y) “x > y”
Equal(x, y) “x = y”
Sum(x, y, z) “z = x + y”

:=
:=

:=
:=

:=
:=

26

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Predicate logic to English
Translate the following statements to English

For every positive integer , there is a positive integer , such that .
∀x. ∃y. Greater(y, x)

x y y > x
∀x. ∃y. Greater(x, y)

∀x. ∃y. Greater(y, x) ∧ Prime(y)

∀x. Prime(x) → (Equal(x, 2) ∨ Odd(x))

∃x. ∃y. Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)

Domain of discourse
Positive integers

Predicate definitions
Even(x) “x is even”
Odd(x) “x is odd”
Prime(x) “x is prime”
Greater(x, y) “x > y”
Equal(x, y) “x = y”
Sum(x, y, z) “z = x + y”

:=
:=

:=
:=

:=
:=

26

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Predicate logic to English
Translate the following statements to English

For every positive integer , there is a positive integer , such that .

For every positive integer , there is a positive integer , such that .

∀x. ∃y. Greater(y, x)
x y y > x

∀x. ∃y. Greater(x, y)
x y x > y

∀x. ∃y. Greater(y, x) ∧ Prime(y)

∀x. Prime(x) → (Equal(x, 2) ∨ Odd(x))

∃x. ∃y. Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)

Domain of discourse
Positive integers

Predicate definitions
Even(x) “x is even”
Odd(x) “x is odd”
Prime(x) “x is prime”
Greater(x, y) “x > y”
Equal(x, y) “x = y”
Sum(x, y, z) “z = x + y”

:=
:=

:=
:=

:=
:=

26

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Predicate logic to English
Translate the following statements to English

For every positive integer , there is a positive integer , such that .

For every positive integer , there is a positive integer , such that .

For every positive integer , there is a positive integer , such that and is prime.

∀x. ∃y. Greater(y, x)
x y y > x

∀x. ∃y. Greater(x, y)
x y x > y

∀x. ∃y. Greater(y, x) ∧ Prime(y)
x y y > x y

∀x. Prime(x) → (Equal(x, 2) ∨ Odd(x))

∃x. ∃y. Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)

Domain of discourse
Positive integers

Predicate definitions
Even(x) “x is even”
Odd(x) “x is odd”
Prime(x) “x is prime”
Greater(x, y) “x > y”
Equal(x, y) “x = y”
Sum(x, y, z) “z = x + y”

:=
:=

:=
:=

:=
:=

26

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Predicate logic to English
Translate the following statements to English

For every positive integer , there is a positive integer , such that .

For every positive integer , there is a positive integer , such that .

For every positive integer , there is a positive integer , such that and is prime.

For every positive integer , if is prime then or is odd.

∀x. ∃y. Greater(y, x)
x y y > x

∀x. ∃y. Greater(x, y)
x y x > y

∀x. ∃y. Greater(y, x) ∧ Prime(y)
x y y > x y

∀x. Prime(x) → (Equal(x, 2) ∨ Odd(x))
x x x = 2 x

∃x. ∃y. Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)

Domain of discourse
Positive integers

Predicate definitions
Even(x) “x is even”
Odd(x) “x is odd”
Prime(x) “x is prime”
Greater(x, y) “x > y”
Equal(x, y) “x = y”
Sum(x, y, z) “z = x + y”

:=
:=

:=
:=

:=
:=

26

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Predicate logic to English
Translate the following statements to English

For every positive integer , there is a positive integer , such that .

For every positive integer , there is a positive integer , such that .

For every positive integer , there is a positive integer , such that and is prime.

For every positive integer , if is prime then or is odd.

There exist positive integers and such that and and are prime.

∀x. ∃y. Greater(y, x)
x y y > x

∀x. ∃y. Greater(x, y)
x y x > y

∀x. ∃y. Greater(y, x) ∧ Prime(y)
x y y > x y

∀x. Prime(x) → (Equal(x, 2) ∨ Odd(x))
x x x = 2 x

∃x. ∃y. Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)
x y x + 2 = y x y

Domain of discourse
Positive integers

Predicate definitions
Even(x) “x is even”
Odd(x) “x is odd”
Prime(x) “x is prime”
Greater(x, y) “x > y”
Equal(x, y) “x = y”
Sum(x, y, z) “z = x + y”

:=
:=

:=
:=

:=
:=

26

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Predicate logic to English: natural translations
Translate the following statements to English

There is no greatest positive integer.

There is no least positive integer.

For every positive integer there is a larger number that is prime.

Every prime number is 2 or odd.

There exist prime numbers that differ by two.

∀x. ∃y. Greater(y, x)

∀x. ∃y. Greater(x, y)

∀x. ∃y. Greater(y, x) ∧ Prime(y)

∀x. Prime(x) → (Equal(x, 2) ∨ Odd(x))

∃x. ∃y. Sum(x, 2, y) ∧ Prime(x) ∧ Prime(y)

Domain of discourse
Positive integers

Predicate definitions
Even(x) “x is even”
Odd(x) “x is odd”
Prime(x) “x is prime”
Greater(x, y) “x > y”
Equal(x, y) “x = y”
Sum(x, y, z) “z = x + y”

:=
:=

:=
:=

:=
:=

27

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

English to predicate logic

“Orange cats like lasagna.”

“Some orange cats don’t like lasagna.”

Domain of discourse
Mammals

Predicate definitions
Cat(x) “x is a cat”
Orange(x) “x is orange”
LikesLasagna(x) “x likes lasagna”

:=
:=

:=

28

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

English to predicate logic

“Orange cats like lasagna.”

“Some orange cats don’t like lasagna.”
∀x. ((Orange(x) ∧ Cat(x)) → LikesLasagna(x))

Domain of discourse
Mammals

Predicate definitions
Cat(x) “x is a cat”
Orange(x) “x is orange”
LikesLasagna(x) “x likes lasagna”

:=
:=

:=

28

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

English to predicate logic

“Orange cats like lasagna.”

“Some orange cats don’t like lasagna.”
∀x. ((Orange(x) ∧ Cat(x)) → LikesLasagna(x))

∃x. ((Orange(x) ∧ Cat(x)) ∧ ¬LikesLasagna(x))

Domain of discourse
Mammals

Predicate definitions
Cat(x) “x is a cat”
Orange(x) “x is orange”
LikesLasagna(x) “x likes lasagna”

:=
:=

:=

28

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

English to predicate logic: translation hints

“Orange cats like lasagna.”

When there’s no leading quantification, it means “for all”.
When restricting to a smaller domain in a “for all”, use implication.

“Some orange cats don’t like lasagna.”

“Some” means “there exists”.
When restricting to a smaller domain in an “exists”, use conjunction.
When putting predicates together, like orange cats, use conjunction.

∀x. ((Orange(x) ∧ Cat(x)) → LikesLasagna(x))

∃x. ((Orange(x) ∧ Cat(x)) ∧ ¬LikesLasagna(x))

Domain of discourse
Mammals

Predicate definitions
Cat(x) “x is a cat”
Orange(x) “x is orange”
LikesLasagna(x) “x likes lasagna”

:=
:=

:=

29

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

Summary
Canonical forms are standard form for a Boolean expression.

Sum-of-products form.
Product-of-sums form.

Predicate logic adds predicates and quantifiers to propositional logic.
Predicate is a function that returns a truth value.
Quantifiers let us talk about all () or some () objects in the domain.
The domain of discourse is the set of objects over which the predicates
and quantifiers in a formula are evaluated.

∀ ∃

30

http://127.0.0.1:4000/courses/cse311/18au/lectures/lecture05.html?print-pdf#/

