1. Been Square, Done That (16 points)

Let the domain of discourse be the real numbers (\mathbb{R}). We define the predicate $\text{OnLine}(a, b, x, y)$ to be true iff (x, y) lies on the line with slope a and intercept b (i.e., iff $ax + b = y$) and the predicate $\text{InSquare}(u, v, r, x, y)$ to be true iff $r > 0$ and (x, y) lies inside of an $r \times r$ square, which has its bottom left corner at (u, v).

Give an English proof of the following claim:

$$\forall u. \forall v. \forall r. (r > 0) \rightarrow \exists a. \exists b. \exists x. \exists y. x \neq u \land y \neq v \land \text{InSquare}(u, v, r, x, y) \land \text{OnLine}(a, b_1, u, v) \land \text{OnLine}(a, b_1, u + r, v + r) \land \text{OnLine}(-a, b_2, u, v + r) \land \text{OnLine}(-a, b_2, u + r, v) \land \text{OnLine}(a, b_1, x, y) \land \text{OnLine}(-a, b_2, x, y)$$

2. Intersect Repellent (20 points)

Prove, via an English proof or using translations of Boolean algebra equivalences to set theory, each of the following claims for arbitrary sets A, B, and C.

(a) [10 Points] $(A \cup B) \cap (B \setminus A) \cap (B \setminus C) = A \cap B \cap C$

(b) [10 Points] $(B \setminus A) \cap (C \setminus A) = (B \cap C) \setminus A$

3. All Set (16 points)

Prove or disprove the following statements. If a proof is given, it must be directly from the set theory definitions (not translations of Boolean algebra equivalences) and in English (not formal).

(a) [8 Points] For any two sets R and S, it holds that $\mathcal{P}(R) \cup \mathcal{P}(S) \subseteq \mathcal{P}(R \cup S)$.

(b) [8 Points] For any two sets R and S, it holds that $\mathcal{P}(R \cup S) \subseteq \mathcal{P}(R) \cup \mathcal{P}(S)$.

4. Keeping Up With the Cartesians (16 points)

Let A, B, and C be non-empty sets. Give an English proof that $(A \times B = A \times C) \rightarrow (B = C)$.

What happens if A is empty?

5. A Mod and a Wink (16 points)

Let a, b be integers and c, m be positive integers. Give an English proof that $a \equiv b \pmod{m}$ if and only if $ca \equiv cb \pmod{cm}$.
6. A Whale of a Good Prime (16 points)
Give an English proof that, for any prime $p > 2$, we have $p^2 + 1 \equiv 2 \pmod{4}$.

7. Extra Credit: Matchmaking (0 points)
In this problem, you will show that given n red points and n blue points in the plane such that no three points lie on a common line, it is possible to draw line segments between red-blue pairs so that all the pairs are matched and none of the line segments intersect. Assume that there are n red and n blue points fixed in the plane.

A matching M is a collection of n line segments connecting distinct red-blue pairs. The total length of a matching M is the sum of the lengths of the line segments in M. Say that a matching M is minimal if there is no matching with a smaller total length.

Let $\text{IsMinimal}(M)$ be the predicate that is true precisely when M is a minimal matching. Let $\text{HasCrossing}(M)$ be the predicate that is true precisely when there are two line segments in M that cross each other.

Give an argument in English explaining why there must be at least one matching M so that $\text{IsMinimal}(M)$ is true, i.e.

$$\exists M (\text{IsMinimal}(M))$$

Give an argument in English explaining why

$$\forall M (\text{HasCrossing}(M) \rightarrow \neg \text{IsMinimal}(M))$$

Now use the two results above to give a proof of the statement:

$$\exists M \neg \text{HasCrossing}(M).$$