CSE 311: Foundations of Computing I

Section 3: Structural Induction and Regular Expressions

0. Structural Induction

(a) Recall the recursive definition of a list:

$$
\text { List }=[] \text { | Integer :: List }
$$

And the definition of "len" on lists:

$$
\begin{array}{ll}
\operatorname{len}([]) & =0 \\
\operatorname{len}(x:: L) & =1+\operatorname{len}(L)
\end{array}
$$

Consider the following recursive definition:

$$
\begin{array}{ll}
\operatorname{stutter}([]) & =[] \\
\operatorname{stutter}(x:: L) & =x:: x:: \operatorname{stutter}(L)
\end{array}
$$

Prove that len $(\operatorname{stutter}(L))=2 \operatorname{len}(L)$ for all Lists L.
(b) Consider the recursive definition of a tree:

$$
\text { Tree }=\text { Nil } \mid \text { Tree(Integer, Tree, Tree })
$$

And the definition of "size" on trees:

$$
\begin{array}{ll}
\operatorname{size}(\text { Nil }) & =0 \\
\operatorname{size}(\operatorname{Tree}(x, L, R)) & =1+\operatorname{size}(L)+\operatorname{size}(R)
\end{array}
$$

And the definition of "height" on trees:

$$
\begin{array}{ll}
\text { height }(\operatorname{Nil}) & =0 \\
\operatorname{height}(\operatorname{Tree}(x, L, R)) & =1+\max (\operatorname{height}(L), \operatorname{height}(R))
\end{array}
$$

Prove that $\operatorname{size}(T) \leq 2^{\text {height }(T)+1}-1$ for all Trees T.
(c) In this problem, we will use the same definitions for Tree defined above. Now, consider the definition of "mirror" on trees:

$$
\begin{array}{ll}
\operatorname{mirror}(\operatorname{Nil}) & =\operatorname{Nil} \\
\operatorname{mirror}(\operatorname{Tree}(x, L, R)) & =\operatorname{Tree}(x, \operatorname{mirror}(R), \operatorname{mirror}(L))
\end{array}
$$

Prove that $\operatorname{size}(T)=\operatorname{size}(\operatorname{mirror}(T))$ for all Trees T by structural induction.

1. Meta-mathematical

Consider the following, simplified, recursive definition of an arithmetic expression:

$$
\text { Expr }=\text { Natural } \mid \text { VarName }(\text { String }) \mid \operatorname{Sum}(\text { Expr, Expr }) \mid \operatorname{Prod}(\text { Expr, Expr })
$$

And the definition of "eval" on expressions:

$$
\begin{array}{ll}
\operatorname{eval}(x) & =x \\
\operatorname{eval}(\operatorname{VarName}(s)) & =\operatorname{eval}(\operatorname{lookup}(s)) \\
\operatorname{eval}(\operatorname{Sum}(L, R)) & =\operatorname{eval}(L)+\operatorname{eval}(R) \\
\operatorname{eval}(\operatorname{Prod}(L, R)) & =\operatorname{eval}(L) \times \operatorname{eval}(R)
\end{array}
$$

Note that "lookup" is a function that returns an Expr corresponding to the given string (which represents a variable name). You may assume "lookup" will always return an Expr - that is, we assume all variables are defined. For simplicity, we omit the definition of this function.

Now, consider the definition of "replace" on expressions:

$$
\begin{array}{ll}
\text { replace }(t, r, x) & =x \\
\text { replace }(t, r, \operatorname{VarName}(s)) & =\text { if } s=t \text { then } r \text { else } \operatorname{VarName} s \\
\text { replace }(t, r, \operatorname{Sum}(L, R)) & =\operatorname{Sum}(\operatorname{replace}(t, r, L), \text { replace }(t, r, R)) \\
\text { replace }(t, r, \operatorname{Prod}(L, R)) & =\operatorname{Prod}(\operatorname{replace}(t, r, L), \text { replace }(t, r, R))
\end{array}
$$

Let a be an arbitrary string. Suppose eval $(\operatorname{lookup}(a)) \geq 0$. Let $F=\operatorname{Sum}(\operatorname{VarName}(a), 1)$.
(a) Prove that eval $(\operatorname{VarName}(a)) \leq \operatorname{eval}(F)$.
(b) Prove that for any arbitrary Expr E that $\operatorname{eval}(E) \leq \operatorname{eval}($ replace $(a, F, E))$.

2. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).
(b) Write a regular expression that matches all base- 3 numbers that are divisible by 3 .
(c) Write a regular expression that matches all binary strings that contain the substring " 111 ", but not the substring " 000 ".

