CSE 311: Foundations of Computing I

Section: Induction

0 . Induction

(a) Prove that $9 \mid n^{3}+(n+1)^{3}+(n+2)^{3}$ for all $n>1$ by induction.
(b) Prove that $6 n+6<2^{n}$ for all $n \geq 6$.
(c) Define

$$
H_{i}=1+\frac{1}{2}+\cdots+\frac{1}{i}
$$

Prove that $H_{2^{n}} \geq 1+\frac{n}{2}$ for $n \in \mathbb{N}$.

1. Strong Induction

(a) Prove that, for all $n \in \mathbb{N}$, every n has an unsigned binary representation.
(b) Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2)
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n.

