CSE 311: Foundations of Computing I

Induction Solutions

Induction

(a) Prove that $9 \mid n^{3}+(n+1)^{3}+(n+2)^{3}$ for all $n>1$ by induction.

Solution:

Let $P(n)$ be " $9 \mid n^{3}+(n+1)^{3}+(n+2)^{3}$ ". We will prove $P(n)$ for all integers $n>1$ by induction.
Base Case $(n=2): 2^{3}+(2+1)^{3}+(2+2)^{3}=8+27+64=99=9 \cdot 11$, so $9 \mid 2^{3}+(2+1)^{3}+(2+2)^{3}$, so $P(2)$ holds.
Induction Hypothesis: Assume that $9 \mid j^{3}+(j+1)^{3}+(j+2)^{3}$ for some arbitrary integer $j>1$. Note that this is equivalent to assuming that $j^{3}+(j+1)^{3}+(j+2)^{3}=9 k$ for some integer k.
Induction Step: Goal: Show $9 \mid(j+1)^{3}+(j+2)^{3}+(j+3)^{3}$
Now

$$
\begin{aligned}
(j+1)^{3}+(j+2)^{3}+(j+3)^{3} & =(j+3)^{3}+9 k-j^{3} \text { for some integer } k \quad \text { [Induction Hypothesis] } \\
& =j^{3}+9 j^{2}+27 j+27+9 k-j^{3} \\
& =9 j^{2}+27 j+27+9 k \\
& =9\left(j^{2}+3 j+3+k\right)
\end{aligned}
$$

So $9 \mid(j+1)^{3}+(j+2)^{3}+(j+3)^{3}$, so $P(j) \rightarrow P(j+1)$ for an arbitrary integer $j>1$.
Conclusion: $P(n)$ holds for all integers $n>1$ by induction.
(b) Prove that $6 n+6<2^{n}$ for all $n \geq 6$.

Solution:

Let $P(n)$ be " $6 n+6<2^{n}$ ". We will prove $P(n)$ for all integers $n \geq 6$ by induction.
Base Case $(n=6): 6 \cdot 6+6=42<64=2^{6}$, so $P(6)$ holds.
Induction Hypothesis: Assume that $6 j+6<2^{j}$ for some arbitrary integer $j \geq 6$.
Induction Step: Goal: Show $6(j+1)+6<2^{j+1}$
Now

$$
\begin{aligned}
6(j+1)+6 & =6 j+6+6 & & \\
& <2^{j}+6 & & {[\text { Induction Hypothesis }] } \\
& <2^{j}+2^{j} & & {\left[\text { Since } 2^{j}>6, \text { since } j \geq 6\right] } \\
& <2 \cdot 2^{j} & & \\
& <2^{j+1} & &
\end{aligned}
$$

So $P(j) \rightarrow P(j+1)$ for an arbitrary integer $j \geq 6$.
Conclusion: $P(n)$ holds for all integers $n \geq 6$ by induction.
(c) Define

$$
H_{i}=1+\frac{1}{2}+\cdots+\frac{1}{i}
$$

Prove that $H_{2^{n}} \geq 1+\frac{n}{2}$ for $n \in \mathbb{N}$.

Solution:

We define H_{i} more formally as $\sum_{k=1}^{i} \frac{1}{k}$. Let $P(n)$ be " $H_{2^{n}} \geq 1+\frac{n}{2}$ ". We will prove $P(n)$ for all $n \in \mathbb{N}$ by induction.

Base Case $(n=0)$: $H_{2^{0}}=H_{1}=\sum_{k=1}^{1} \frac{1}{k}=1 \geq 1+\frac{0}{2}$, so $P(0)$ holds.
Induction Hypothesis: Assume that $H_{2^{j}} \geq 1+\frac{j}{2}$ for some arbitrary integer $j \in \mathbb{N}$.
Induction Step: Goal: Show $H_{2^{j+1}} \geq 1+\frac{j+1}{2}$
Now

$$
\begin{aligned}
H_{2^{j+1}} & =\sum_{k=1}^{2^{j+1}} \frac{1}{k} \\
& =\sum_{k=1}^{2^{j}} \frac{1}{k}+\sum_{k=2^{j}+1}^{2^{j+1}} \frac{1}{k} \\
& \geq 1+\frac{j}{2}+\sum_{k=2^{j}+1}^{2^{j+1}} \frac{1}{k} \quad \text { [Induction Hypothesis] } \\
& \geq 1+\frac{j}{2}+2^{j} \cdot \frac{1}{2^{j+1}} \quad\left[\text { There are } 2^{j} \text { terms in }\left[2^{j}+1,2^{j+1}\right] \text { and each is at least } \frac{1}{2^{j+1}}\right] \\
& \geq 1+\frac{j}{2}+\frac{2^{j}}{2^{j+1}} \\
& \geq 1+\frac{j}{2}+\frac{1}{2} \\
& \geq 1+\frac{j+1}{2}
\end{aligned}
$$

So $P(j) \rightarrow P(j+1)$ for an arbitrary integer $j \in \mathbb{N}$.
Conclusion: $P(n)$ holds for all integers $n \in \mathbb{N}$ by induction.

Strong Induction

(a) Prove that, for all $n \in \mathbb{N}$, every n has an unsigned binary representation.

Solution:

Let $P(n)$ be " n has an unsigned binary representation". We will prove $P(n)$ for all integers $n \in \mathbb{N}$ by induction.

Base Case $(n=0)$: The unsigned binary representation of 0 is 0_{2}, so $P(0)$ holds.
Induction Hypothesis: Assume that $P(j)$ holds for all integers $0 \leq j \leq k$ for some arbitrary $k \in \mathbb{N}$.
Induction Step: Goal: Show $P(k+1)$ has an unsigned binary representation
Let 2^{ℓ} be the largest power of two not greater than $k+1$ (i.e. $\ell=\left\lfloor\log _{2}(n)\right\rfloor$). Let $r=k+1-2^{\ell}$, the remainder.
Note that $r<2^{\ell}<k$, so r has some binary representation r_{2} [by the Induction Hypothesis].
Then $1 r_{2}$ is the binary expansion for $k+1$.
So $P(0) \wedge P(1) \wedge \cdots \wedge P(k) \rightarrow P(k+1)$ for some arbitrary $k \in \mathbb{N}$.
Conclusion: $P(n)$ holds for all integers $n \in \mathbb{N}$ by induction.
(b) Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2)
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n.

Solution:

Let $P(n)$ be " $f(n)=n$ ". We prove that $P(n)$ is true for all $n \in \mathbb{N}$ by strong induction on n.
Base Cases $(n=0, n=1): f(0)=0$ and $f(1)=1$ by definition.
Induction Hypothesis: Assume that $P(0) \wedge P(1) \wedge \ldots P(n-1)$ are true for some fixed but arbitrary $n-1 \geq 1$.
Induction Step: We show $P(n)$:

$$
\begin{aligned}
f(n) & =2 f(n-1)-f(n-2) & & {[\text { Definition of } f] } \\
& =2(n-1)-(n-2) & & {[\text { Induction Hypothesis] }} \\
& =n & & \text { [Algebra] }
\end{aligned}
$$

Therefore, $P(n)$ is true for all $n \in \mathbb{N}$.

