CSE 311: Foundations of Computing I

Induction Solutions

Induction

(a) Prove that $9 \mid n^3 + (n+1)^3 + (n+2)^3$ for all n > 1 by induction.

Solution:

Let P(n) be "9 | $n^3 + (n+1)^3 + (n+2)^3$ ". We will prove P(n) for all integers n > 1 by induction.

Base Case (n=2): $2^3 + (2+1)^3 + (2+2)^3 = 8 + 27 + 64 = 99 = 9 \cdot 11$, so $9 \mid 2^3 + (2+1)^3 + (2+2)^3$, so P(2) holds.

Induction Hypothesis: Assume that $9 \mid j^3 + (j+1)^3 + (j+2)^3$ for some arbitrary integer j > 1. Note that this is equivalent to assuming that $j^3 + (j+1)^3 + (j+2)^3 = 9k$ for some integer k.

Induction Step: Goal: Show $9 \mid (j+1)^3 + (j+2)^3 + (j+3)^3$ Now

 $(j+1)^3 + (j+2)^3 + (j+3)^3 = (j+3)^3 + 9k - j^3$ for some integer k [Induction Hypothesis] $= j^3 + 9j^2 + 27j + 27 + 9k - j^3$ $= 9j^2 + 27j + 27 + 9k$ $= 9(j^2 + 3j + 3 + k)$

So $9 \mid (j+1)^3 + (j+2)^3 + (j+3)^3$, so $P(j) \to P(j+1)$ for an arbitrary integer j > 1.

Conclusion: P(n) holds for all integers n > 1 by induction.

(b) Prove that $6n + 6 < 2^n$ for all $n \ge 6$.

Solution:

Let P(n) be " $6n + 6 < 2^n$ ". We will prove P(n) for all integers $n \ge 6$ by induction.

Base Case (n=6): $6 \cdot 6 + 6 = 42 < 64 = 2^6$, so P(6) holds.

Induction Hypothesis: Assume that $6j + 6 < 2^j$ for some arbitrary integer $j \ge 6$.

Induction Step: Goal: Show $6(j+1)+6<2^{j+1}$ Now

$$6(j+1)+6=6j+6+6$$

$$<2^{j}+6 \qquad \qquad \text{[Induction Hypothesis]}$$

$$<2^{j}+2^{j} \qquad \qquad \text{[Since }2^{j}>6\text{, since }j\geq6\text{]}$$

$$<2\cdot2^{j}$$

$$<2^{j+1}$$

So $P(j) \to P(j+1)$ for an arbitrary integer $j \ge 6$.

Conclusion: P(n) holds for all integers $n \ge 6$ by induction.

(c) Define

$$H_i = 1 + \frac{1}{2} + \dots + \frac{1}{i}$$

1

Prove that $H_{2^n} \geq 1 + \frac{n}{2}$ for $n \in \mathbb{N}$.

Solution:

We define H_i more formally as $\sum_{k=1}^i \frac{1}{k}$. Let P(n) be " $H_{2^n} \ge 1 + \frac{n}{2}$ ". We will prove P(n) for all $n \in \mathbb{N}$ by induction.

Base Case (n=0): $H_{2^0}=H_1=\sum_{k=1}^1\frac{1}{k}=1\geq 1+\frac{0}{2}$, so P(0) holds.

Induction Hypothesis: Assume that $H_{2^j} \geq 1 + \frac{j}{2}$ for some arbitrary integer $j \in \mathbb{N}$.

Induction Step: Goal: Show
$$H_{2^{j+1}} \ge 1 + \frac{j+1}{2}$$

Now

$$\begin{split} H_{2^{j+1}} &= \sum_{k=1}^{2^{j+1}} \frac{1}{k} \\ &= \sum_{k=1}^{2^{j}} \frac{1}{k} + \sum_{k=2^{j}+1}^{2^{j+1}} \frac{1}{k} \\ &\geq 1 + \frac{j}{2} + \sum_{k=2^{j}+1}^{2^{j+1}} \frac{1}{k} \quad \text{[Induction Hypothesis]} \\ &\geq 1 + \frac{j}{2} + 2^{j} \cdot \frac{1}{2^{j+1}} \quad \text{[There are } 2^{j} \text{ terms in } [2^{j} + 1, 2^{j+1}] \text{ and each is at least } \frac{1}{2^{j+1}}] \\ &\geq 1 + \frac{j}{2} + \frac{2^{j}}{2^{j+1}} \\ &\geq 1 + \frac{j}{2} + \frac{1}{2} \\ &\geq 1 + \frac{j+1}{2} \end{split}$$

So $P(j) \to P(j+1)$ for an arbitrary integer $j \in \mathbb{N}$.

Conclusion: P(n) holds for all integers $n \in \mathbb{N}$ by induction.

Strong Induction

(a) Prove that, for all $n \in \mathbb{N}$, every n has an unsigned binary representation.

Solution:

Let P(n) be "n has an unsigned binary representation". We will prove P(n) for all integers $n \in \mathbb{N}$ by induction.

Base Case (n=0): The unsigned binary representation of 0 is 0_2 , so P(0) holds.

Induction Hypothesis: Assume that P(j) holds for all integers $0 \le j \le k$ for some arbitrary $k \in \mathbb{N}$.

Induction Step: Goal: Show P(k+1) has an unsigned binary representation

Let 2^{ℓ} be the largest power of two not greater than k+1 (i.e. $\ell = \lfloor \log_2(n) \rfloor$). Let $r = k+1-2^{\ell}$, the remainder.

Note that $r < 2^{\ell} < k$, so r has some binary representation r_2 [by the Induction Hypothesis].

Then $1r_2$ is the binary expansion for k+1.

So $P(0) \wedge P(1) \wedge \cdots \wedge P(k) \rightarrow P(k+1)$ for some arbitrary $k \in \mathbb{N}$.

Conclusion: P(n) holds for all integers $n \in \mathbb{N}$ by induction.

(b) Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f:

$$f(0) = 0$$

 $f(1) = 1$
 $f(n) = 2f(n-1) - f(n-2)$

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n.

Solution:

Let P(n) be "f(n) = n". We prove that P(n) is true for all $n \in \mathbb{N}$ by strong induction on n.

Base Cases (n = 0, n = 1): f(0) = 0 and f(1) = 1 by definition.

Induction Hypothesis: Assume that $P(0) \wedge P(1) \wedge \dots P(n-1)$ are true for some fixed but arbitrary $n-1 \geq 1$.

Induction Step: We show P(n):

$$\begin{split} f(n) &= 2f(n-1) - f(n-2) & \text{[Definition of } f \text{]} \\ &= 2(n-1) - (n-2) & \text{[Induction Hypothesis]} \\ &= n & \text{[Algebra]} \end{split}$$

Therefore, P(n) is true for all $n \in \mathbb{N}$.