CSE 311: Foundations of Computing I

QuickCheck: Induction Solutions (due Thursday, May 5)

0. Another Induction

Prove that $2^n \ge 5n$ for all integers $n \ge 5$ by induction. Solution:

Let P(n) be " $2^n \ge 5n$ ". We will prove P(n) for all integers $n \ge 5$ by induction.

Base Case (n = 5): $2^5 = 32 \ge 25 = 5 \cdot 5$, so P(5) holds.

Inductive Hypothesis: Assume that $2^j \ge 5j$ for an arbitrary integer $j \ge 5$.

Inductive Step: Now $2^{j+1} \ge 5(j+1)$ $2^{j+1} = 2 \cdot 2^{j}$ $\ge 2 \cdot 5j$ $\ge 5j + 5j$ $\ge 5j + 5 \cdot 1$ $\ge 5(j+1)$ [Since $j \ge 5 > 1$]

So $P(j) \rightarrow P(j+1)$ for an arbitrary integer $j \ge 5$.

Conclusion: P(n) holds for all integers $n \ge 5$ by induction.