CSE 311: Foundations of Computing I
QuickCheck: Induction Solutions (due Thursday, May 5)

0 . Another Induction

Prove that $2^{n} \geq 5 n$ for all integers $n \geq 5$ by induction.
Solution:
Let $P(n)$ be " $2^{n} \geq 5 n$ ". We will prove $P(n)$ for all integers $n \geq 5$ by induction.
Base Case ($n=5$): $2^{5}=32 \geq 25=5 \cdot 5$, so $P(5)$ holds.
Inductive Hypothesis: Assume that $2^{j} \geq 5 j$ for an arbitrary integer $j \geq 5$.
Inductive Step: Goal: Show $2^{j+1} \geq 5(j+1)$
Now

$$
\begin{aligned}
2^{j+1} & =2 \cdot 2^{j} & & \\
& \geq 2 \cdot 5 j & & {[\text { By IH }] } \\
& \geq 5 j+5 j & & \\
& \geq 5 j+5 \cdot 1 & & {[\text { Since } j \geq 5>1] } \\
& \geq 5(j+1) & &
\end{aligned}
$$

So $P(j) \rightarrow P(j+1)$ for an arbitrary integer $j \geq 5$.
Conclusion: $P(n)$ holds for all integers $n \geq 5$ by induction.

