CSE 311: Foundations of Computing I

Section 5: Number Theory \& Induction

0. More Number Theory

(a) Prove that if $n^{2}+1$ is a perfect square, where n is an integer, then n is even.
(b) Prove that if n is a positive integer such that the sum of the divisors of n is $n+1$, then n is prime.

1. Induction

(a) Prove for all $n \in \mathbb{N}$ that if you have two groups of numbers, a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{n}, such that $\forall(i \in[n]) . a_{i} \leq b_{i}$, then it must be that:

$$
\sum_{i=1}^{n} a_{i} \leq \sum_{i=1}^{n} b_{i}
$$

(b) For any $n \in \mathbb{N}$, define S_{n} to be the sum of the squares of the first n positive integers, or

$$
S_{n}=\sum_{i=1}^{n} i^{2}
$$

For all $n \in \mathbb{N}$, prove that $S_{n}=\frac{1}{6} n(n+1)(2 n+1)$.
(c) Define the triangle numbers as $\triangle_{n}=1+2+\cdots+n$, where $n \in \mathbb{N}$. We showed in lecture that $\triangle_{n}=\frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$
\sum_{i=0}^{n} i^{3}=\triangle_{n}^{2}
$$

