CSE 311: Foundations of Computing I

Section 5: Number Theory \& Induction Solutions

0. More Number Theory

(a) Prove that if $n^{2}+1$ is a perfect square, where n is an integer, then n is even.

Solution:

Suppose $n^{2}+1$ is a perfect square. Then, by definition of perfect square, $n^{2}+1=k^{2}$ for some $k \in \mathbb{N}$. Since n and k are integers, we can define some integer z such that $k=n+z$. Now, substituting, we get:

$$
\begin{aligned}
n^{2}+1 & =(n+z)^{2} \\
n^{2}+1 & =n^{2}+2 n z+z^{2} \\
1 & =2 n z+z^{2} \\
1 & =z(2 n+z) \\
\frac{1}{z} & =(2 n+z)
\end{aligned}
$$

Since n and z are integers, $2 n+z$ is an integer, which means $\frac{1}{z}$ is an integer. The only integers which satisfy this constraint are $z= \pm 1$, and in both these cases $z=\frac{1}{z}$, so we can subtract z from both sides to find $n=0$ as the only solution. Since $n=0$, and 0 is even, n is even.
(b) Prove that if n is a positive integer such that the sum of the divisors of n is $n+1$, then n is prime.

Solution:

Note that $n \mid n$. If the sum of divisors of n is $n+1$, then $n+1-n=1$ must be the only other divisor. It follows, by definition of prime, that n is prime.

1. Induction

(a) Prove for all $n \in \mathbb{N}$ that if you have two groups of numbers, a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{n}, such that $\forall(i \in[n]) . a_{i} \leq b_{i}$, then it must be that:

$$
\sum_{i=1}^{n} a_{i} \leq \sum_{i=1}^{n} b_{i}
$$

Solution:

Let $\mathrm{P}(n)$ be the statement: "For any two groups of numbers, a_{1}, \cdots, a_{n} and b_{1}, \cdots, b_{n}, such that $\forall(i \in[n]) . a_{i} \leq b_{i}$, it is true that:

$$
\sum_{i=1}^{n} a_{i} \leq \sum_{i=1}^{n} b_{i}{ }^{\prime \prime}
$$

defined for all $n \in \mathbb{N}$. We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$ by induction on n :

Base Case $(n=0)$. We know that:

$$
\begin{aligned}
\sum_{i=1}^{n} a_{i} & =\sum_{i=1}^{0} a_{i} \\
& =0 \\
& \leq 0 \\
& =\sum_{i=1}^{0} b_{i} \\
& =\sum_{i=1}^{n} b_{i}
\end{aligned}
$$

So the claim is true for $n=0$.
Induction Hypothesis. Suppose that $\mathrm{P}(k)$ is true for some $k \in \mathbb{N}$.
Induction Step. Let the groups of numbers a_{1}, \cdots, a_{k+1} and b_{1}, \cdots, b_{k+1} be two groups such that $a_{i} \leq b_{i}$ for all $i \in[k+1]$.
Note that

$$
\begin{array}{rlrl}
\sum_{i=1}^{k+1} a_{i} & =\sum_{i=1}^{k} a_{i}+a_{k+1} & & {[\text { Splitting the summation }]} \\
& \leq \sum_{i=1}^{k} b_{i}+a_{k+1} & & {[\mathrm{By} \mathrm{IH}]} \\
& \leq \sum_{i=1}^{k} b_{i}+b_{k+1} & & {[\text { By Assumption }]} \\
& \leq \sum_{i=1}^{k+1} b_{i} & {[\text { Algebra }]}
\end{array}
$$

Thus we have shown that if the claim is true for k, it is true for $k+1$.
Therefore, we have shown $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$ by induction.
(b) For any $n \in \mathbb{N}$, define S_{n} to be the sum of the squares of the first n positive integers, or

$$
S_{n}=\sum_{i=1}^{n} i^{2} .
$$

For all $n \in \mathbb{N}$, prove that $S_{n}=\frac{1}{6} n(n+1)(2 n+1)$.

Solution:

Let $\mathrm{P}(n)$ be the statement " $S_{n}=\frac{1}{6} n(n+1)(2 n+1)$ " defined for all $n \in \mathbb{N}$. We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$ by induction on n.

Base Case. When $n=0$, we know the sum of the squares of the first n positive integers is the sum of no terms, so we have a sum of 0 . Thus, $S_{0}=0$. Since $\frac{1}{6}(0)(0+1)((2)(0)+1)=0$, we know that $P(0)$ is true.
Induction Hypothesis. Suppose that $\mathrm{P}(k)$ is true for some $k \in \mathbb{N}$.

Induction Step. Examining S_{k+1}, we see that

$$
S_{k+1}=\sum_{i=1}^{k+1} i^{2}=\sum_{i=1}^{k} i^{2}+(k+1)^{2}=S_{k}+(k+1)^{2} .
$$

By the induction hypothesis, we know that $S_{k}=\frac{1}{6} k(k+1)(2 k+1)$. Therefore, we can substitute and rewrite the expression as follows:

$$
\begin{aligned}
S_{k+1} & =S_{k}+(k+1)^{2} \\
& =\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2} \\
& =(k+1)\left(\frac{1}{6} k(2 k+1)+(k+1)\right) \\
& =\frac{1}{6}(k+1)(k(2 k+1)+6(k+1)) \\
& =\frac{1}{6}(k+1)\left(2 k^{2}+7 k+6\right) \\
& =\frac{1}{6}(k+1)(k+2)(2 k+3) \\
& =\frac{1}{6}(k+1)((k+1)+1)(2(k+1)+1)
\end{aligned}
$$

Thus, we can conclude that $\mathrm{P}(k+1)$ is true.
Therefore, because the base case and induction step hold, $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$ by induction.
(c) Define the triangle numbers as $\triangle_{n}=1+2+\cdots+n$, where $n \in \mathbb{N}$. We showed in lecture that $\triangle_{n}=\frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$
\sum_{i=0}^{n} i^{3}=\triangle_{n}^{2}
$$

Solution:

First, note that $\triangle_{n}=\sum_{i=0}^{n} i$. So, we are trying to prove $\sum_{i=0}^{n} i^{3}=\left(\sum_{i=0}^{n} i\right)^{2}$.
Let $\mathrm{P}(n)$ be the statement:

$$
\sum_{i=0}^{n} i^{3}=\left(\sum_{i=0}^{n} i\right)^{2}
$$

We prove that $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$ by induction on n.
Base Case. $0^{3}=0^{2}$, so $P(0)$ holds.
Induction Hypothesis. Suppose that $\mathrm{P}(k)$ is true for some $k \in \mathbb{N}$.

Induction Step. We show $\mathbf{P}(k+1)$:

$$
\begin{aligned}
\sum_{i=0}^{k+1} i^{3} & =\sum_{i=1}^{k} i^{3}+(k+1)^{3} & & \text { [Take out a term] } \\
& =\left(\sum_{i=0}^{k} i\right)^{2}+(k+1)^{3} & & \text { [Induction Hypothesis] } \\
& =\left(\frac{k(k+1)}{2}\right)^{2}+(k+1)^{3} & & \text { [Substitution from part (a)] } \\
& =(k+1)^{2}\left(\frac{k^{2}}{2^{2}}+(k+1)\right) & & \text { [Factor } \left.(k+1)^{2}\right] \\
& =(k+1)^{2}\left(\frac{k^{2}+4 k+4}{4}\right) & & \text { [Add via comon denominator] } \\
& =(k+1)^{2}\left(\frac{(k+2)^{2}}{4}\right) & & \text { [Factor numerator] } \\
& =\left(\frac{(k+1)(k+2)}{2}\right)^{2} & & \text { [Take out the square] } \\
& =\left(\sum_{i=0}^{k+1} i\right)^{2} & & \text { [Substitution from part (a)] }
\end{aligned}
$$

Therefore, $\mathrm{P}(n)$ is true for all $n \in \mathbb{N}$ by induction.

