CSE 311: Foundations of Computing I

Section 4: Sets and Modular Arithmetic

0. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say so. (a) $A = \{1, 2, 3, 2\}$

- (b) $B = \{\{\}, \{\{\}\}, \{\{\}\}, \{\{\}\}, \{\{\}, \{\}\}, \dots\}$
- (c) $C = A \times (B \cup \{7\})$
- (d) $D = \emptyset$
- (e) $E = \{\varnothing\}$
- (f) $F = \mathcal{P}(\{\emptyset\})$

1. Set = Set

Prove the following set identities.

- (a) Let the universal set be \mathcal{U} . Prove $\overline{\overline{X}} = X$ for any set X.
- (b) Prove $(A \oplus B) \oplus B = A$ for any sets A, B.
- (c) Prove $A \cup B \subseteq A \cup B \cup C$ for any sets A, B, C.
- (d) Let the universal set be \mathcal{U} . Prove $A \cap \overline{B} \subseteq A \setminus B$ for any sets A, B.

2. Casting Out Nines

Let $n \in \mathbb{N}$. Prove that if $n \equiv 0 \pmod{9}$, then the sum of the digits of n is a multiple of 9. You may use without proof that $a \equiv b \pmod{m} \rightarrow a^i \equiv b^i \pmod{m}$ for $i \in \mathbb{N}$.

3. Modular Arithmetic

(a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.

(b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

4. New Definitions

- We say (\mathcal{M}, \star) is a magma iff $\forall (x \in \mathcal{M}) \forall (y \in \mathcal{M}) \ x \star y \in \mathcal{M}$.
- We say "e is a *left-identity*, in a magma (\mathcal{M}, \star) , iff $\forall (a \in \mathcal{M}) \ e \star a = a$.
- We say "e is a right-identity, in a magma (\mathcal{M}, \star) , iff $\forall (a \in \mathcal{M}) \ a \star e = a$.
- We say " x^{-1} is a right-inverse of x, in a magma (\mathcal{M}, \star), iff for all right-identities, e, in $\mathcal{M}, x \star x^{-1} = e$.

- (a) Let (Q, \triangle) be a magma. Prove that if a and b are both right-identities and all $m \in Q$ have right-inverses, then a = b.
- (b) Let (\mathcal{R}, \Box) be an associative magma with a left and right identity $e \in \mathcal{R}$. Prove for all $a \in \mathcal{R}$, if a has a right-inverse a^{-1} , then $(a^{-1})^{-1} = a$.