CSE 311: Foundations of Computing I

Section 4: Sets and Modular Arithmetic

0. How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say so.
(a) $A=\{1,2,3,2\}$
(b) $B=\{\{ \},\{\{ \}\},\{\{ \},\{ \}\},\{\{ \},\{ \},\{ \}\}, \ldots\}$
(c) $C=A \times(B \cup\{7\})$
(d) $D=\varnothing$
(e) $E=\{\varnothing\}$
(f) $F=\mathcal{P}(\{\varnothing\})$

1. Set $=$ Set

Prove the following set identities.
(a) Let the universal set be \mathcal{U}. Prove $\overline{\bar{X}}=X$ for any set X.
(b) Prove $(A \oplus B) \oplus B=A$ for any sets A, B.
(c) Prove $A \cup B \subseteq A \cup B \cup C$ for any sets A, B, C.
(d) Let the universal set be \mathcal{U}. Prove $A \cap \bar{B} \subseteq A \backslash B$ for any sets A, B.

2. Casting Out Nines

Let $n \in \mathbb{N}$. Prove that if $n \equiv 0(\bmod 9)$, then the sum of the digits of n is a multiple of 9 .
You may use without proof that $a \equiv b(\bmod m) \rightarrow a^{i} \equiv b^{i}(\bmod m)$ for $i \in \mathbb{N}$.

3. Modular Arithmetic

(a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.
(b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

4. New Definitions

- We say (\mathcal{M}, \star) is a magma iff $\forall(x \in \mathcal{M}) \forall(y \in \mathcal{M}) x \star y \in \mathcal{M}$.
- We say " e is a left-identity, in a magma (\mathcal{M}, \star), iff $\forall(a \in \mathcal{M}) e \star a=a$.
- We say " e is a right-identity, in a magma (\mathcal{M}, \star), iff $\forall(a \in \mathcal{M}) a \star e=a$.
- We say " x^{-1} is a right-inverse of x, in a magma (\mathcal{M}, \star), iff for all right-identities, e, in $\mathcal{M}, x \star x^{-1}=e$.
(a) Let (\mathcal{Q}, \triangle) be a magma. Prove that if a and b are both right-identities and all $m \in \mathcal{Q}$ have right-inverses, then $a=b$.
(b) Let (\mathcal{R}, \square) be an associative magma with a left and right identity $e \in \mathcal{R}$. Prove for all $a \in \mathcal{R}$, if a has a right-inverse a^{-1}, then $\left(a^{-1}\right)^{-1}=a$.

