Sets and Modular Arithmetic 4 Solutions

How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say so.

(a) $A = \{1, 2, 3, 2\}$

Solution:

3

(b)
$$B = \{\{\}, \{\{\}\}, \{\{\}, \{\}\}, \{\{\}, \{\}\}, \dots\}$$

Solution:

$$B = \{\{\}, \{\{\}\}, \{\{\}, \{\}\}, \{\{\}\}, \dots\}$$

$$= \{\{\}, \{\{\}\}, \{\{\}\}\}, \{\{\}\}, \dots\}$$

$$= \{\emptyset, \{\emptyset\}\}$$

So, there are two elements in B.

(c)
$$C = A \times (B \cup \{7\})$$

Solution:

 $C=\{1,2,3\}\times\{\varnothing,\{\varnothing\},7\}=\{(a,b)\mid a\in\{1,2,3\},b\in\{\varnothing,\{\varnothing\},7\}\}.$ It follows that there are $3\times 3=9$ elements in C.

1

(d) $D = \emptyset$

Solution:

0.

(e)
$$E = \{\varnothing\}$$

Solution:

1.

(f)
$$F = \mathcal{P}(\{\varnothing\})$$

Solution:

 $2^1 = 2$. The elements are $F = \{\emptyset, \{\emptyset\}\}$.

Set = Set

Prove the following set identities.

(a) Let the universal set be \mathcal{U} . Prove $\overline{\overline{X}} = X$ for any set X.

Solution:

We want to prove that $S = \overline{\overline{S}}$.

$$\begin{split} S &= \{x \ : \ x \in S\} \\ &= \{x \ : \ \neg \neg (x \in S)\} \quad \text{[Negation]} \\ &= \{x \ : \ \neg (x \not \in S)\} \quad \text{[Definition of } \not \in \text{]} \\ &= \{x \ : \ \neg (x \in \overline{S})\} \quad \text{[Definition of } \overrightarrow{S}\text{]} \\ &= \{x \ : \ (x \not \in \overline{S})\} \quad \text{[Definition of } \not \in \text{]} \\ &= \{x \ : \ x \in \overline{\overline{S}}\} \quad \text{[Definition of } \overrightarrow{\overline{S}}\text{]} \\ &= \overline{\overline{S}} \end{split}$$

It follows that $S = \overline{\overline{S}}$.

(Note that if we did not have a universal set, this whole proof would be garbage.)

(b) Prove $(A \oplus B) \oplus B = A$ for any sets A, B.

Solution:

$$(A \oplus B) \oplus B = \{x : x \in (A \oplus B) \oplus B\} \qquad \text{[Set Comprehension]}$$

$$= \{x : (x \in A \oplus x \in B) \oplus (x \in B)\} \qquad \text{[Definition of } \oplus \text{]}$$

$$= \{x : x \in A \oplus (x \in B \oplus x \in B)\} \qquad \text{[Associativity of } \oplus \text{]}$$

$$= \{x : x \in A \oplus (\mathsf{F})\} \qquad \text{[Definition of } \oplus \text{]}$$

$$= \{x : x \in A\} \qquad \text{[Definition of } \oplus \text{]}$$

$$= A \qquad \text{[Set Comprehension]}$$

(c) Prove $A \cup B \subseteq A \cup B \cup C$ for any sets A, B, C.

Solution:

Let x be arbitrary.

$$\begin{array}{ccc} x \in A \cup B & \to & (x \in A \cup B) \lor (x \in C) \\ & \to & x \in (A \cup B) \cup C & & \text{[Definition of } \cup \text{]} \end{array}$$

Thus, since $x \in A \cup B \to x \in (A \cup B) \cup C$, it follows that $A \cup B \subseteq A \cup B \cup C$, by definition of subset.

(d) Let the universal set be \mathcal{U} . Prove $A \cap \overline{B} \subseteq A \setminus B$ for any sets A, B.

Solution:

Let x be arbitrary.

$$\begin{array}{cccc} x \in A \cap \overline{B} & \to & x \in A \wedge x \in \overline{B} & [\text{Definition of } \cap] \\ & \to & x \in A \wedge x \not \in B & [\text{Definition of } \overline{B}] \\ & \to & x \in A \setminus B & [\text{Definition of } \setminus] \end{array}$$

Thus, since $x \in A \cap \overline{B} \to x \in A \setminus B$, it follows that $A \cap \overline{B} \subseteq A \setminus B$, by definition of subset.

Casting Out Nines

Let $n \in \mathbb{N}$. Prove that if $n \equiv 0 \pmod{9}$, then the sum of the digits of n is a multiple of 9.

You may use without proof that $a \equiv b \pmod{m} \to a^i \equiv b^i \pmod{m}$ for $i \in \mathbb{N}$.

Solution:

Let $n\in\mathbb{N}$ be arbitrary where $n\equiv 0\pmod 9$. Furthermore, consider the base-10 representation of n, where x_i is the ith digit from the right; so, $n=(x_mx_{m-1}\cdots x_1x_0)_{10}=\sum_{i=0}^m x_i10^i$. Then, note:

$$\sum_{i=0}^{m} x_i \equiv \sum_{i=0}^{m} x_i 1^i \pmod{9} \qquad \text{[Multiplying by 1]}$$

$$\equiv \sum_{i=0}^{m} x_i 10^i \pmod{9} \qquad \text{[}10 \equiv 1 \pmod{9} \text{ and Theorem]}$$

$$\equiv n \pmod{9} \qquad \text{[Base-10 Definition of } n\text{]}$$

$$\equiv 0 \pmod{9} \qquad \text{[By assumption]}$$

Therefore, by the definition of modular congruence, $9 \mid \sum_{i=0}^{m} x_i - 0$, so $\sum_{i=0}^{m} x_i$ is divisible by 9.

Modular Arithmetic

(a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.

Solution:

Suppose $a \mid b$ and $b \mid a$, where a, b are integers. By the definition of divides, we have $a \neq 0$, $b \neq 0$ and b = ka, a = jb for some integers k, j. Combining these equations, we see that a = j(ka).

Then, dividing both sides by a, we get 1 = jk. So, $\frac{1}{j} = k$. Note that j and k are integers, which is only possible if $j, k \in \{1, -1\}$. It follows that b = -a or b = a.

(b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

Solution:

Suppose $n \mid m$ with n, m > 1, and $a \equiv b \pmod m$. By definition of divides, we have m = kn for some $k \in \mathbb{Z}$. By definition of congruence, we have $m \mid a - b$, which means that a - b = mj for some $j \in \mathbb{Z}$. Combining the two equations, we see that a - b = (knj) = n(kj). By definition of congruence, we have $a \equiv b \pmod n$, as required.

New Definitions

- We say (\mathcal{M}, \star) is a magma iff $\forall (x \in \mathcal{M}) \forall (y \in \mathcal{M}) \ x \star y \in \mathcal{M}$.
- We say "e is a left-identity, in a magma (\mathcal{M}, \star) , iff $\forall (a \in \mathcal{M}) \ e \star a = a$.
- We say "e is a right-identity, in a magma (\mathcal{M}, \star) , iff $\forall (a \in \mathcal{M}) \ a \star e = a$.
- We say " x^{-1} is a right-inverse of x, in a magma (\mathcal{M}, \star) , iff for all right-identities, e, in \mathcal{M} , $x \star x^{-1} = e$.
- (a) Let (\mathcal{Q}, \triangle) be a magma. Prove that if a and b are both right-identities and all $m \in \mathcal{Q}$ have right-inverses, then a = b.

Solution:

Suppose a and b are both right-identities. Let $c \in \mathcal{Q}$ be arbitrary. Furthermore, note that c has a right-inverse (call it c^{-1}). We now show a = b via a series of equalities:

(b) Let (\mathcal{R}, \square) be an associative magma with a left and right identity $e \in \mathcal{R}$. Prove for all $a \in \mathcal{R}$, if a has a right-inverse a^{-1} , then $(a^{-1})^{-1} = a$.

Solution:

Let $a \in \mathcal{R}$ be arbitrariy. Suppose $a^{-1} \in \mathcal{R}$ is a right-inverse of a. We now show $(a^{-1})^{-1} = a$ via a series of equalities:

$$\begin{array}{ll} (a^{-1})^{-1} = e \square (a^{-1})^{-1} & \qquad \qquad [e \text{ is a left-identity}] \\ &= (a \square a^{-1}) \square (a^{-1})^{-1} & \qquad [a^{-1} \text{ is a right-inverse of } a] \\ &= a \square (a^{-1} \square (a^{-1})^{-1}) & \qquad [associtivity] \\ &= a \square e & \qquad [(a^{-1})^{-1} \text{ is a right-inverse of } a^{-1}] \\ &= a & \qquad [e \text{ is a right-identity}] \end{array}$$