CSE 311: Foundations of Computing I

Sets and Modular Arithmetic 4 Solutions

How Many Elements?

For each of these, how many elements are in the set? If the set has infinitely many elements, say so.
(a) $A=\{1,2,3,2\}$

Solution:

3
(b) $B=\{\{ \},\{\{ \}\},\{\{ \},\{ \}\},\{\{ \},\{ \},\{ \}\}, \ldots\}$

Solution:

$$
\begin{aligned}
B & =\{\{ \},\{\{ \}\},\{\{ \},\{ \}\},\{\{ \},\{ \},\{ \}\}, \ldots\} \\
& =\{\{ \},\{\{ \}\},\{\{ \}\},\{\{ \}\}, \ldots\} \\
& =\{\varnothing,\{\varnothing\}\}
\end{aligned}
$$

So, there are two elements in B.
(c) $C=A \times(B \cup\{7\})$

Solution:

$C=\{1,2,3\} \times\{\varnothing,\{\varnothing\}, 7\}=\{(a, b) \mid a \in\{1,2,3\}, b \in\{\varnothing,\{\varnothing\}, 7\}\}$. It follows that there are $3 \times 3=9$ elements in C.
(d) $D=\varnothing$

Solution:

0.

(e) $E=\{\varnothing\}$

Solution:

1.

(f) $F=\mathcal{P}(\{\varnothing\})$

Solution:

$2^{1}=2$. The elements are $F=\{\varnothing,\{\varnothing\}\}$.

Set $=$ Set
Prove the following set identities.
(a) Let the universal set be \mathcal{U}. Prove $\overline{\bar{X}}=X$ for any set X.

Solution:

We want to prove that $S=\overline{\bar{S}}$.

$$
\begin{aligned}
S & =\{x: x \in S\} & & \\
& =\{x: \neg \neg(x \in S)\} & & \text { [Negation] } \\
& =\{x: \neg(x \notin S)\} & & \text { [Definition of } \notin] \\
& =\{x: \neg(x \in \bar{S})\} & & \text { [Definition of } \bar{S}] \\
& =\{x:(x \notin \bar{S})\} & & \text { [Definition of } \notin] \\
& =\{x: x \in \overline{\bar{S}}\} & & \text { [Definition of } \overline{\bar{S}}] \\
& =\overline{\bar{S}} & &
\end{aligned}
$$

It follows that $S=\overline{\bar{S}}$.
(Note that if we did not have a universal set, this whole proof would be garbage.)
(b) Prove $(A \oplus B) \oplus B=A$ for any sets A, B.

Solution:

$$
\begin{aligned}
(A \oplus B) \oplus B & =\{x: x \in(A \oplus B) \oplus B\} & & \text { [Set Comprehension] } \\
& =\{x:(x \in A \oplus x \in B) \oplus(x \in B)\} & & \text { [Definition of } \oplus] \\
& =\{x: x \in A \oplus(x \in B \oplus x \in B)\} & & \text { [Associativity of } \oplus] \\
& =\{x: x \in A \oplus(\mathrm{~F})\} & & \text { [Definition of } \oplus] \\
& =\{x: x \in A\} & & \text { [Definition of } \oplus] \\
& =A & & \text { [Set Comprehension] }
\end{aligned}
$$

(c) Prove $A \cup B \subseteq A \cup B \cup C$ for any sets A, B, C.

Solution:

Let x be arbitrary.

$$
\begin{aligned}
x \in A \cup B & \rightarrow(x \in A \cup B) \vee(x \in C) \\
& \rightarrow x \in(A \cup B) \cup C \quad \text { [Definition of } \cup \text {] }
\end{aligned}
$$

Thus, since $x \in A \cup B \rightarrow x \in(A \cup B) \cup C$, it follows that $A \cup B \subseteq A \cup B \cup C$, by definition of subset.
(d) Let the universal set be \mathcal{U}. Prove $A \cap \bar{B} \subseteq A \backslash B$ for any sets A, B.

Solution:

Let x be arbitrary.

$$
\begin{array}{rlrl}
x \in A \cap \bar{B} & \rightarrow x \in A \wedge x \in \bar{B} & \text { [Definition of } \cap] \\
& \rightarrow x \in A \wedge x \notin B & & {[\text { Definition of } \bar{B}]} \\
& \rightarrow x \in A \backslash B & & {[\text { Definition of } \backslash]}
\end{array}
$$

Thus, since $x \in A \cap \bar{B} \rightarrow x \in A \backslash B$, it follows that $A \cap \bar{B} \subseteq A \backslash B$, by definition of subset.

Casting Out Nines

Let $n \in \mathbb{N}$. Prove that if $n \equiv 0(\bmod 9)$, then the sum of the digits of n is a multiple of 9 .
You may use without proof that $a \equiv b(\bmod m) \rightarrow a^{i} \equiv b^{i}(\bmod m)$ for $i \in \mathbb{N}$.

Solution:

Let $n \in \mathbb{N}$ be arbitrary where $n \equiv 0(\bmod 9)$. Furthermore, consider the base- 10 representation of n, where x_{i} is the i th digit from the right; so, $n=\left(x_{m} x_{m-1} \cdots x_{1} x_{0}\right)_{10}=\sum_{i=0}^{m} x_{i} 10^{i}$. Then, note:

$$
\begin{aligned}
\sum_{i=0}^{m} x_{i} & \equiv \sum_{i=0}^{m} x_{i} 1^{i}(\bmod 9) & & {[\text { Multiplying by } 1] } \\
& \equiv \sum_{i=0}^{m} x_{i} 10^{i}(\bmod 9) & & {[10 \equiv 1(\bmod 9) \text { and Theorem }] } \\
& \equiv n(\bmod 9) & & {[\text { Base-10 Definition of } n] } \\
& \equiv 0(\bmod 9) & & {[\text { By assumption }] }
\end{aligned}
$$

Therefore, by the definition of modular congruence, $9 \mid \sum_{i=0}^{m} x_{i}-0$, so $\sum_{i=0}^{m} x_{i}$ is divisible by 9 .

Modular Arithmetic

(a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a=b$ or $a=-b$.

Solution:

Suppose $a \mid b$ and $b \mid a$, where a, b are integers. By the definition of divides, we have $a \neq 0, b \neq 0$ and $b=k a, a=j b$ for some integers k, j. Combining these equations, we see that $a=j(k a)$.
Then, dividing both sides by a, we get $1=j k$. So, $\frac{1}{j}=k$. Note that j and k are integers, which is only possible if $j, k \in\{1,-1\}$. It follows that $b=-a$ or $b=a$.
(b) Prove that if $n \mid m$, where n and m are integers greater than 1 , and if $a \equiv b(\bmod m)$, where a and b are integers, then $a \equiv b(\bmod n)$.

Solution:

Suppose $n \mid m$ with $n, m>1$, and $a \equiv b(\bmod m)$. By definition of divides, we have $m=k n$ for some $k \in \mathbb{Z}$. By definition of congruence, we have $m \mid a-b$, which means that $a-b=m j$ for some $j \in \mathbb{Z}$. Combining the two equations, we see that $a-b=(k n j)=n(k j)$. By definition of congruence, we have $a \equiv b(\bmod n)$, as required.

New Definitions

- We say (\mathcal{M}, \star) is a magma iff $\forall(x \in \mathcal{M}) \forall(y \in \mathcal{M}) x \star y \in \mathcal{M}$.
- We say " e is a left-identity, in a magma (\mathcal{M}, \star), iff $\forall(a \in \mathcal{M}) e \star a=a$.
- We say " e is a right-identity, in a magma (\mathcal{M}, \star), iff $\forall(a \in \mathcal{M}) a \star e=a$.
- We say " x^{-1} is a right-inverse of x, in a magma (\mathcal{M}, \star), iff for all right-identities, e, in $\mathcal{M}, x \star x^{-1}=e$.
(a) Let (\mathcal{Q}, \triangle) be a magma. Prove that if a and b are both right-identities and all $m \in \mathcal{Q}$ have right-inverses, then $a=b$.

Solution:

Suppose a and b are both right-identities. Let $c \in \mathcal{Q}$ be arbitrary. Furthermore, note that c has a right-inverse (call it c^{-1}). We now show $a=b$ via a series of equalities:

$$
\begin{aligned}
a & =a \triangle a & & {[a \text { is a right-identity }] } \\
& =\left(c \triangle c^{-1}\right) \triangle a & & {[c \text { has a right-inverse }] } \\
& =b \triangle a & & {[b \text { is a right-identity }] } \\
& =b & & {[a \text { is a right-identity }] }
\end{aligned}
$$

(b) Let (\mathcal{R}, \square) be an associative magma with a left and right identity $e \in \mathcal{R}$. Prove for all $a \in \mathcal{R}$, if a has a right-inverse a^{-1}, then $\left(a^{-1}\right)^{-1}=a$.

Solution:

Let $a \in \mathcal{R}$ be arbitrariy. Suppose $a^{-1} \in \mathcal{R}$ is a right-inverse of a. We now show $\left(a^{-1}\right)^{-1}=a$ via a series of equalities:

$$
\begin{aligned}
\left(a^{-1}\right)^{-1} & =e \square\left(a^{-1}\right)^{-1} & & {[e \text { is a left-identity }] } \\
& =\left(a \square a^{-1}\right) \square\left(a^{-1}\right)^{-1} & & {\left[a^{-1} \text { is a right-inverse of } a\right] } \\
& =a \square\left(a^{-1} \square\left(a^{-1}\right)^{-1}\right) & & {[\text { associtivity }] } \\
& =a \square e & & {\left[\left(a^{-1}\right)^{-1} \text { is a right-inverse of } a^{-1}\right] } \\
& =a & & {[e \text { is a right-identity }] }
\end{aligned}
$$

