CSE 311: Foundations of Computing I

Section 3: FOL and Inference

0. Formal Proofs

For this question only, write formal proofs.
(a) Prove $\forall x(R(x) \wedge S(x))$ given $\forall x(P(x) \rightarrow(Q(x) \wedge S(x)))$, and $\forall x(P(x) \wedge R(x))$.
(b) Prove $\exists x \neg R(x)$ given $\forall x(P(x) \vee Q(x))$, $\forall x(\neg Q(x) \vee S(x))$, $\forall x(R(x) \rightarrow \neg S(x))$, and $\exists x \neg P(x)$.

1. Odds and Ends

Prove that for any even integer, there exists an odd integer greater than that even integer.

2. Magic Squares

Prove that if a real number $x \neq 0$, then $x^{2}+\frac{1}{x^{2}} \geq 2$.

3. Primality Checking

When brute forcing if the number p is prime, you only need to check possible factors up to \sqrt{p}. In this problem, you'll prove why that is the case. Prove that if $n=a b$, then either a or b is at most \sqrt{n}.
(Hint: You want to prove an implication; so, start by assuming $n=a b$. Then, continue by writing out your assumption for contradiction.)

4. Even More Negative

Show that $\forall(x \in \mathbb{Z})$. $\left(\operatorname{Even}(x) \rightarrow(-1)^{x}=1\right)$

5. That's Odd...

Prove that every odd natural number can be expressed as the difference between two consecutive perfect squares.

6. United We Stand

We say that a set S is closed under an operation \star iff $\forall(x, y \in S) .(x \star y \in S)$.
(a) Prove \mathbb{Z} is closed under -.
(b) Prove that \mathbb{Z} is not closed under /.
(c) Prove that \mathbb{I} is not closed under + .

7. A Hint of Things to Come

Prove that $\forall(a, b \in \mathbb{Z}) . a^{2}-4 b \neq 2$.

8. Proofs or it didn't happen!

(a) Prove that if x is an odd integer and y is an integer, then $x y$ is odd if and only if y is odd.
(b) Prove that for integers x and y, if $(x+y)^{2}=16$ that $x y<10$.
(c) Prove that for positive integers x, a where x is odd, there is an even integer y such that $a^{x} \leq a^{y}$.

