
CSE 311: Foundations of Computing I
Section 3: FOL and Inference Solutions

0. Formal Proofs
For this question only, write formal proofs.

(a) Prove ∀x (R(x) ∧ S(x)) given ∀x (P (x) → (Q(x) ∧ S(x))), and ∀x (P (x) ∧R(x)).

Solution:

1. Let x be arbitrary.
2. ∀x (P (x) ∧R(x)) [Given]
3. P (x) ∧R(x) [Elim ∀: 2]
4. P (x) [Elim ∧: 3]
5. R(x) [Elim ∧: 3]
6. ∀x (P (x) → (Q(x) ∧ S(x))) [Given]
7. P (x) → (Q(x) ∧ S(x)) [Elim ∀: 6]
8. Q(x) ∧ S(x) [MP: 4, 7]
9. S(x) [Elim ∧: 8]

10. R(x) ∧ S(x) [Intro ∧: 5, 9]
11. ∀x (R(x) ∧ S(x)) [Intro ∀: 10]

(b) Prove ∃x ¬R(x) given ∀x (P (x) ∨Q(x)), ∀x (¬Q(x) ∨ S(x)), ∀x (R(x) → ¬S(x)), and ∃x ¬P (x).

Solution:

1. ∃x ¬P (x) [Given]
2. ¬P (c) [Elim ∃: 1]
3. ∀x (P (x) ∨Q(x)) [Given]
4. P (c) ∨Q(c) [Elim ∀: 3]
5. Q(c) [Elim ∨: 2, 4]
6. ∀x (¬Q(x) ∨ S(x)) [Given]
7. ¬Q(c) ∨ S(c) [Elim ∀: 6]
8. S(c) [Elim ∨: 5, 7]
9. ∀x (R(x) → ¬S(x)) [Given]
10. R(c) → ¬S(c) [Elim ∀: 9]
11. ¬¬S(c) → ¬R(c) [Contrapositive: 10]
12. S(c) → ¬R(c) [Double Negation: 11]
13. ¬R(c) [MP: 8, 12]
14. ∃x ¬R(x) [Intro ∃: 13]

1. Odds and Ends
Prove that for any even integer, there exists an odd integer greater than that even integer.
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Solution:
Let x be an arbitrary even integer. By the definition of even, we know x = 2y for some corresponding integer
y. Now, we define z to be the integer 2y + 1, which is odd by the definition of odd. By the basic properties of
inequalities, we know 2y + 1 > 2y regardless of y, so we also know z > x.
We’ve now shown that there exists some integer z which is both odd and greater than x. Since x was arbitrary,
we can generalize our conclusion to all even integers.

2. Magic Squares
Prove that if a real number x 6= 0, then x2 +

1

x2
≥ 2.

Solution:
Note that (x2 − 1)2 ≥ 0, because all squares are at least 0. Distributing, we see that x4 + 1 ≥ 2x2. Since
x 6= 0, we can divide by x2 to get x2 + 1

x2
≥ 2, which is what we were trying to prove.

Note: The first step may seem like “magic”, but the way we generally solve these sorts of problems is by
working backward and reversing the entire proof. You are allowed to introduce new facts while doing so, as long
as it’s clear why the fact is always true.

3. Primality Checking
When brute forcing if the number p is prime, you only need to check possible factors up to √

p. In this problem,
you’ll prove why that is the case. Prove that if n = ab, then either a or b is at most

√
n.

(Hint: You want to prove an implication; so, start by assuming n = ab. Then, continue by writing out your
assumption for contradiction.)
Solution:
Suppose that n = ab, where n, a, and b are arbitrary integers. Suppose for contradiction that a, b >

√
n. It

follows that ab >
√
n
√
n = n. We clearly can’t have both n = ab and n < ab; so, this is a contradiction. It

follows that a or b is at most
√
n.

4. Even More Negative
Show that ∀(x ∈ Z). (Even(x) → (−1)x = 1)

Solution:
Let x ∈ Z be arbitrary, and suppose x is even. Choose an n ∈ Z such that x = 2n (we know such an n exists
by the definition of even). It follows that we can rewrite this as

(−1)x = (−1)2n [x = 2n]
= ((−1)2)n

= (1)n [(−1)2 = 1]
= 1 [∀n ∈ R, 1n = 1]

We let x be arbitrary, assumed that it was even, and then showed that the implication holds. it follows that for
every even integer x, (−1)x = 1. Thus the claim is proven.

5. That’s Odd...
Prove that every odd natural number can be expressed as the difference between two consecutive perfect squares.
Solution:
Let x ∈ N be arbitrary, and suppose it is odd. Using the definition of odd, choose a k ∈ N such that x = 2k+1.
Now define n as k+ 1 (which is also a natural number, since N is closed under addition), such that k = n− 1.
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Thus, x = 2k + 1 = 2(n− 1) + 1 = 2n− 1. Starting with this, we have

x = 2n− 1 = n2 − n2 + 2n− 1 [Add and subtract n2]
= n2 − (n2 − 2n+ 1) [rewrite]
= n2 − (n− 1)2 [factoring]

Thus, x can be expressed as the difference between n2 and (n − 1)2, both of which are, by definition, perfect
squares. Since x was arbitrary, it follows that any odd integer can be expressed as the difference between two
squares.

6. United We Stand
We say that a set S is closed under an operation ? iff ∀(x, y ∈ S). (x ? y ∈ S).

(a) Prove Z is closed under −.

Solution:
Let a, b ∈ Z be arbitrary. We want to show that (a − b) ∈ Z. By the theorem given, since b ∈ Z, we
know that −b ∈ Z. Thus, we can rewrite a− b as a+ (−b), which is addition between two integers. We
are given that Z is closed under addition, so this number is also an integer. It follows that Z is closed
under subtraction.

(b) Prove that Z is not closed under /.

Solution:
Choose a = 1 and b = 2. Both of these are integers. a

b
=

1

2
= 0.5 which is not an integer. Thus, we

have provided a counter-example to prove that the integers are not closed under division.

(c) Prove that I is not closed under +.

Solution:
To prove that I is not closed under addition, we need to prove the negation of the definition of closure.
That is, we want to show ∃(x, y ∈ I). (x+ y 6∈ I).

Choose x =
√
2 and choose y = −

√
2. Note that both of these are irrational (we’ll prove this later).

Also, note that x+ y =
√
2−

√
2 = 0. We can write 0 as 0

1
. Since 0 and 1 are both integers, this shows

that x+ y is a rational number by definition of rational numbers.
This means that x+y is not irrational, proving the claim that the irrationals are not closed under addition.

7. A Hint of Things to Come
Prove that ∀(a, b ∈ Z). a2 − 4b 6= 2.
Solution:
Let a, b ∈ Z be arbitrary. Assume for the sake of contradiction that a2−4b = 2. Then, a2 = 4b+2 = 2(2b+1).
Since b ∈ Z and Z is closed under addition and multiplication, (2b + 1) ∈ Z. By definition, this means a2 is
even. We have shown in class that ∀(a ∈ Z). Even(a2) → Even(a), so we know that a is even. By definition,
there exists a k ∈ Z such that a = 2k. Choose such a k.

We can replace a with 2k in the original statement to get (2k)2 − 4b = 2 ↔ 2k2 − 2b = 1 ↔ 2(k2 − b) = 1.
Since k, b ∈ Z and Z is closed under multiplication and addition, this means that (k2 − b) ∈ Z. It follows by
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the definition of even numbers that 1 is even. However, we know that 1 is in fact odd (choose k = 0, then
1 = 2k + 1, the definition of odd). Thus, we have found a contradiction.

It follows that our assumption is false, so the original statement must be true.

8. Proofs or it didn’t happen!
(a) Prove that if x is an odd integer and y is an integer, then xy is odd if and only if y is odd.

Solution:
Let x be an arbitrary odd integer and y be an arbitrary integer. By the definition of odd, we know
x = 2k + 1 for some corresponding integer k. We will show that if y is odd, xy is odd, and if y is even,
xy is even to show both directions of the biconditional.
Suppose y is odd. Then by the definition of odd, we know y = 2m + 1 for some corresponding integer
m. Then, xy = (2k+ 1)(2m+ 1) = 4km+ 2m+ 2k+ 1 = 2(2km+m+ k) + 1. Since 2km+m+ k is
an integer because m and k are integers, xy is odd by the definition of odd.
Suppose y is even. Then by the definition of even, we know y = 2n for some corresponding integer n.
Then, xy = (2k+ 1)(2n) = 2(2kn+ n). Since 2kn+ n is an integer because n and k are integers, xy is
even by the definition of even, so xy is odd if and only if y is odd. Since x and y were arbitrary, we can
generalize our conclusion to all odd integers x and all integers y.

(b) Prove that for integers x and y, if (x+ y)2 = 16 that xy < 10.

Solution:
Let x and y be arbitrary integers such that (x+ y)2 = 16.
First, notice that (x + y)2 = x2 + 2xy + y2 = 16 by distributivity. Now, subtracting x2 + y2 from both
sides of our equation, we see that 2xy = 16− x2 − y2.
But because squares are positive, we know that x2 ≥ 0 and y2 ≥ 0. If we respectively subtract x2 and y2

from both sides of these inequalities, we obtain 0 ≥ −x2 and 0 ≥ −y2. Now, we see:

0 + 0 ≥ −x2 − y2 [Addition of inequalities]
16 ≥ 16− x2 − y2 [Adding 16 to both sides]

Composing this inequality with our initial identitiy, we have 2xy = 16 − x2 − y2 ≤ 16, or equivalently,
2xy ≤ 16. Dividing both sides by 2, we see that xy ≤ 8. Finally, since 8 < 10, it must be the case that
xy ≤ 8 < 10, so xy < 10. This is what we wanted to show.

(c) Prove that for positive integers x, a where x is odd, there is an even integer y such that ax ≤ ay.

Solution:
Let x be an arbitrary odd integer and a be an arbitrary positive integer. By the definition of odd, we
know x = 2k + 1 for some corresponding integer k. Then we have

ax = a2k+1 [Substituting for x]
≤ a · a2k+1 [a is a positive integer, so a ≥ 1]
= a2k+2 [Properties of exponents]

We have 2k+2 > 2k+1, and 2k+2 = 2(k+1), which is even since k+1 is an integer. Thus, we have
found an even integer y such that ax ≤ ay, so we have shown that our claim holds.
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