CSE 311: Foundations of Computing I

QuickCheck: Gates and Equivalence Solutions

0 . If you turn the paper horizontally, the circuits look like robots (:

(a) Convert each of the following circuits to logical expressions.

(ii)

Solution:

(i) $((\neg p) \wedge(p \vee q)) \wedge \neg \neg q$
(ii) $\neg p \wedge(q \wedge q)$
(b) Prove that (i) and (ii) are equivalent using a truth table.

Solution:

p	q	$(\neg p \wedge(p \vee q))$	$(\neg p \wedge(p \vee q)) \wedge \neg \neg q$	$\neg p \wedge(q \wedge q)$
T	T	F	F	F
T	F	F	F	F
F	T	T	T	T
F	F	F	F	F

(c) Prove that (i) and (ii) are equivalent using propositional equivalences. See your handout for a full list of them.

Solution:

$$
\begin{aligned}
(\neg p \wedge(p \vee q)) \wedge \neg \neg q & \equiv(\neg p \wedge(p \vee q)) \wedge q \\
& \equiv \neg p \wedge((p \vee q) \wedge q) \\
& \equiv \neg p \wedge(q \wedge(q \vee p)) \\
& \equiv \neg p \wedge q \\
& \equiv \neg p \wedge(q \wedge q)
\end{aligned}
$$

[Double Negation]
[Associative]
[Commutativity (twice)]
[Absorbtion]
[Idempotency]

