CSE 311: Foundations of Computing I

Section 1: Logic Solutions

0. Exclusive Or

For each of the following, decide whether inclusive-or or exclusive-or is intended:
(a) Experience with C or Java is required.

Solution:

Inclusive Or.
(b) Lunch includes soup or salad.

Solution:

Exclusive Or.
(c) Publish or perish

Solution:

Exclusive Or.
(d) To enter the country you need a passport or voter registration card.

Solution:

Inclusive Or.

1. Translations

For each of the following, define propositional variables and translate the sentences into logical notation.
(a) I will remember to send you the address only if you send me an e-mail message.

Solution:

$$
\begin{aligned}
& p: I \text { will remember to send you the address } \\
& q: \text { You send me an e-mail message } \\
& \qquad p \rightarrow q
\end{aligned}
$$

(b) If berries are ripe along the trail, hiking is safe if and only if grizzly bears have not been seen in the area.

Solution:

$$
\begin{aligned}
& p: \text { Berries are ripe along the trail } \\
& q: \text { Hiking is safe } \\
& r: \text { Grizzly bears have been seen in the area }
\end{aligned}
$$

$$
p \rightarrow(q \leftrightarrow \neg r)
$$

(c) Unless I am trying to type something, my cat is either eating or sleeping.

Solution:

$$
\begin{aligned}
& p: \text { My cat is eating } \\
& q: \text { My cat is sleeping } \\
& r: \text { I'm trying to type }
\end{aligned}
$$

$$
\neg r \rightarrow(p \oplus q)
$$

2. Teatime

Consider the following sentence:
If I am drinking tea then I am eating a cookie, or, if I am eating a cookie then I am drinking tea.
(a) Define propositional variables and translate the sentence into an expression in logical notation.

Solution:

$$
\begin{aligned}
& p: \text { I am drinking tea } \\
& q: \text { I am eating a cookie } \\
& (p \rightarrow q) \vee(q \rightarrow p)
\end{aligned}
$$

(b) Fill out a truth table for your expression.

Solution:

p	q	$(p \rightarrow q)$	$(q \rightarrow p)$	$(p \rightarrow q) \vee(q \rightarrow p)$
T	T	T	T	T
T	F	F	T	T
F	T	T	F	T
F	F	T	T	T

(c) Based on your truth table, classify the original sentence as a contingency, tautology, or contradiction.

Solution:

Tautology

3. Truth Tables

Write a truth table for each of the following:
(a) $(p \oplus q) \vee(p \oplus \neg q)$

Solution:

p	q	$p \oplus q$	$p \oplus \neg q$	$(p \oplus q) \vee(p \oplus \neg q)$
T	T	F	T	T
T	F	T	F	T
F	T	T	F	T
F	F	F	T	T

(b) $(p \vee q) \rightarrow(p \oplus q)$

Solution:

p	q	$p \vee q$	$p \oplus q$	$(p \vee q) \rightarrow(p \oplus q)$
T	T	T	F	F
T	F	T	T	T
F	T	T	T	T
F	F	F	F	T

(c) $p \leftrightarrow \neg p$

Solution:

p	$\neg p$	$p \leftrightarrow \neg p$
T	F	F
F	T	F

4. Circuitous

Translate the following circuit into a logical expression.

Solution:
$\neg(\neg p \vee(p \wedge \neg q))$

