CSE 311: Foundations of Computing I

Section 1: Logic Solutions

0. Exclusive Or

For each of the following, decide whether inclusive-or or exclusive-or is intended:

- (a) Experience with C or Java is required.
 - **Solution:**

Inclusive Or.

- (b) Lunch includes soup or salad.
 - Solution:

Exclusive Or.

- (c) Publish or perish
 - Solution:

Exclusive Or.

- (d) To enter the country you need a passport or voter registration card.
 - Solution:

Inclusive Or.

1. Translations

For each of the following, define propositional variables and translate the sentences into logical notation.

- (a) I will remember to send you the address only if you send me an e-mail message.
 - **Solution:**

p: I will remember to send you the address

q: You send me an e-mail message

$$p \rightarrow q$$

- (b) If berries are ripe along the trail, hiking is safe if and only if grizzly bears have not been seen in the area.
 - Solution:

p: Berries are ripe along the trail

q: Hiking is safe

r: Grizzly bears have been seen in the area

$$\boxed{p \to (q \leftrightarrow \neg r)}$$

(c) Unless I am trying to type something, my cat is either eating or sleeping.

Solution:

 $p: \mathsf{My}\ \mathsf{cat}\ \mathsf{is}\ \mathsf{eating}$

 $q: \mathsf{My}\ \mathsf{cat}\ \mathsf{is}\ \mathsf{sleeping}$

r: I'm trying to type

$$\neg r \to (p \oplus q)$$

2. Teatime

Consider the following sentence:

If I am drinking tea then I am eating a cookie, or, if I am eating a cookie then I am drinking tea.

(a) Define propositional variables and translate the sentence into an expression in logical notation.

Solution:

p: I am drinking tea

 $q: \mathsf{I}$ am eating a cookie

$$\boxed{(p \to q) \lor (q \to p)}$$

(b) Fill out a truth table for your expression.

Solution:

p	q	$(p \rightarrow q)$	$(q \rightarrow p)$	$(p \to q) \lor (q \to p)$
Т	Т	Т	Т	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	Т	Т

(c) Based on your truth table, classify the original sentence as a contingency, tautology, or contradiction.

Solution:

Tautology

3. Truth Tables

Write a truth table for each of the following:

(a)
$$(p \oplus q) \lor (p \oplus \neg q)$$

Solution:

p	q	$p\oplus q$	$p \oplus \neg q$	$(p \oplus q) \vee (p \oplus \neg q)$
Т	Т	F	Т	Т
Т	F	Т	F	Т
F	Т	Т	F	Т
F	F	F	Т	Т

(b)
$$(p \lor q) \to (p \oplus q)$$

Solution:

p	q	$p \lor q$	$p\oplus q$	$(p\vee q)\to (p\oplus q)$
Т	Т	Т	F	F
Т	F	Т	Т	Т
F	Т	Т	Т	Т
F	F	F	F	Т

(c)
$$p \leftrightarrow \neg p$$

Solution:

p	$\neg p$	$p \leftrightarrow \neg p$
Т	F	F
F	Т	F

4. Circuitous

Translate the following circuit into a logical expression.

Solution:

$$\neg(\neg p \lor (p \land \neg q))$$