Adam Blank
 CSF
 Foundations of Computing I

Strings

- An alphabet Σ is any finite set of characters
- The set Σ^{*} is the set of strings over the alphabet Σ.

$$
\Sigma *=\varepsilon \mid \Sigma^{*} \sigma
$$

Gdam

A STRING is EMPTY or "STRING CHAR".

- The set of strings is made up of:
$-\varepsilon \in \Sigma^{*}$ (ε is the empty string)
- If $W \in \Sigma^{*}, \sigma \in \Sigma$, then $\mathrm{W} \sigma \in \Sigma^{*}$

Recursively Defined Programs (on Binary Strings)

$$
\mathrm{B}=\varepsilon|0| 1 \mid \mathrm{B}_{0}+\mathrm{B}_{1}
$$

A BSTR is EMPTY, 0,1 , or "BSTRO BSTR1".
Let's write a "reverse" function for binary strings.

$$
\text { rev : B } \rightarrow \text { B }
$$

rev is a function that takes in a binary string and returns a binary string
$\operatorname{rev}(\varepsilon)=\varepsilon$
$\operatorname{rev}(0)=0$
$\operatorname{rev}(1)=1$
$\operatorname{rev}(a+b)=\sqrt{\operatorname{nev}(b)+\operatorname{Lev}(a)}$

CSE 311: Foundations of Computing

Lecture 17: Structural Induction

Palindromes

Palindromes are strings that are the same backwards and forwards (e.g. "abba", "tht", "neveroddoreven").

$$
\mathrm{Pal}=\varepsilon|\sigma| \sigma \mathrm{Pal} \sigma
$$

A PAL is EMPTY or CHAR or "CHAR PAL CHAR".

$$
a b b a=a(b b) a=a(b(\varepsilon \beta b) a
$$

Recursively Defined Programs (on Binary Strings)

$$
\mathrm{B}=\varepsilon|0| 1 \mid \mathrm{B}_{0}+\mathrm{B}_{1}
$$

A BSTR is EMPTY, 0,1 , or "BSTRO BSTR1".
Let's write a "reverse" function for binary strings.

```
rev : B \(\rightarrow\) B
\(\operatorname{rev}(\varepsilon) \quad=\varepsilon\)
\(\operatorname{rev}(0)=0\)
\(\operatorname{rev}(1)=1\)
\(\operatorname{rev}(a+b)=\operatorname{rev}(b)+\operatorname{rev}(a)\)
```


Recursively Defined Programs (on Binary Strings)

$\mathrm{B}=\bar{\varepsilon}|0| 1 \mid \mathrm{B}_{0}+\mathrm{B}_{1}$
rev : B \rightarrow B
$\operatorname{rev}(\varepsilon) \quad=\varepsilon$
$\operatorname{rev}(0)=0$
$\operatorname{rev}(1)=1$
$\operatorname{rev}(a+b)=\operatorname{rev}(b)+\operatorname{rev}(a)$
Claim: For all binary strings $X, \operatorname{rev}(\operatorname{rev}(X))=X$
Case $\varepsilon: \operatorname{rev}(\operatorname{rev}(\varepsilon))=\operatorname{rev}(\varepsilon)=\varepsilon \quad$ Def of rev
Case 0: $\operatorname{rev}(\operatorname{rev}(0))=\operatorname{rev}(0)=0 \quad$ Def of rev
Case 1: $\operatorname{rev}(\operatorname{rev}(1))=\operatorname{rev}(1)=1 \quad$ Def of rev

Recursively Defined Programs (on Binary Strings)

$$
\mathrm{B}=\varepsilon|0| 1 \mid \mathrm{B}_{0}+\mathrm{B}_{1}
$$

rev: B \rightarrow B
$\operatorname{rev}(\varepsilon)=\varepsilon$
$\operatorname{rev}(O)=0$
$\operatorname{rev}(\mathrm{I})=1$
$\operatorname{rev}(a+b)=\operatorname{rev}(b)+\operatorname{rev}(a)$
Claim: For all binary strings $\mathbf{X}, \operatorname{rev}(\operatorname{rev}(X))=X$
Suppose $\operatorname{rev}(\operatorname{rev}(\mathrm{a}))=\mathrm{a}$ and $\operatorname{rev}(\operatorname{rev}(\mathrm{b}))=\mathrm{b}$ for some strings a, b.
Case $a+b$:

Recursively Defined Programs (on Binary Strings)

Claim: For all binary strings $X, \operatorname{rev}(\operatorname{rev}(X))=X$
Suppose $\operatorname{rev}(\operatorname{rev}(\mathrm{a}))=\mathrm{a}$ and $\operatorname{rev}(\operatorname{rev}(\mathrm{b}))=\mathrm{b}$ for some strings a, b.

Case $a+b$:

$$
\begin{aligned}
\operatorname{rev}(\operatorname{rev}(a+b)) & =\operatorname{rev}(\operatorname{rev}(b)+\operatorname{rev}(a)) & & \text { Def of rev } \\
& =\operatorname{rev}(\operatorname{rev}(a))+\operatorname{rev}(\operatorname{rev}(b)) & & \text { Def of rev } \\
& =a+b & & \text { By IH! }
\end{aligned}
$$

Recursively Defined Programs (on Binary Strings)

We go by structural induction on B. Suppose rev(rev(a)) = a and $\operatorname{rev}(\operatorname{rev}(b))=b$ for some strings a, b.
Case $\varepsilon: \operatorname{rev}(\operatorname{rev}(\varepsilon))=\operatorname{rev}(\varepsilon)=\varepsilon \quad$ Def of rev
Case 0: $\operatorname{rev}(\operatorname{rev}(0))=\operatorname{rev}(0)=0 \quad$ Def of rev
Case 1: $\operatorname{rev}(\operatorname{rev}(1))=\operatorname{rev}(1)=1 \quad$ Def of rev
Case $a+b$:

$$
\begin{aligned}
\operatorname{rev}(\operatorname{rev}(a+b)) & =\operatorname{rev}(\operatorname{rev}(b)+\operatorname{rev}(a)) & & \text { Def of rev } \\
& =\operatorname{rev}(\operatorname{rev}(a))+\operatorname{rev}(\operatorname{rev}(b)) & & \text { Def of rev } \\
& =a+b & & \text { By IH! }
\end{aligned}
$$

Since the claim is true for all the cases, it's true for all binary strings.

All Binary Strings with no 1's before 0's

$$
A=\varepsilon \quad D+A_{0} \mid A_{1}+1
$$

A BIN is EMPTY or " 0 BIN" or "BIN 1".

$\ln : A \rightarrow$ Int
$\operatorname{len}(\varepsilon) \quad=0$
$\operatorname{len}(0+a)=1+\operatorname{len}(a)$
$\operatorname{len}(a+1)=1+\operatorname{len}(a)$

$\# 0: A \rightarrow$ Int
$\# 0(\varepsilon)=0$
$\# 0(0+a)=1+\# 0(a)$
$\# 0(a+1)=\# 0(a)$
$\operatorname{nol:~} \mathrm{A} \rightarrow \mathrm{A}$
$\operatorname{nol}(\varepsilon)=\varepsilon$
$\operatorname{nol}(0+a)$
$=0+\operatorname{nol}(\mathrm{a})$
$\operatorname{nol}(\mathrm{a}+1)$
$=\operatorname{nol}(\mathrm{a})$

All Binary Strings with no 1's before 0's		
$\mathrm{A}=\varepsilon\left\|0+\mathrm{A}_{0}\right\| \mathrm{A}_{1}+1$		
len : $\mathrm{A} \rightarrow$ Int len (ε) $\operatorname{len}(0+a)=1+\operatorname{len}(a)$ $\operatorname{len}(a+1)=1+\operatorname{len}(a)$	$\begin{array}{\|l} \# 0: \mathrm{A} \rightarrow \text { Int } \\ \# 0(\varepsilon) \quad=0 \\ \# 0(0+\mathrm{a})=1+\# 0(\mathrm{a}) \\ \# 0(\mathrm{a}+1)=\# 0(\mathrm{a}) \\ \hline \end{array}$	$\begin{array}{\|l} \text { nol: } \mathrm{A} \rightarrow \mathrm{~A} \\ \text { nol }(\varepsilon) \\ \text { nol }(0+\mathrm{a}) \\ =\boldsymbol{\varepsilon} \\ \text { nol }(\mathrm{a}+1) \\ =\operatorname{nol}(\mathrm{nol}(\mathrm{a}) \\ \hline \end{array}$
Claim: Prove We go by structural i Suppose len(nol(x) Case $\mathbf{A}=\mathbf{0}+\mathrm{x}$: $\operatorname{Ln}($ nol $(0+x))$	at for all $x \in A$, duction on A . Let A \# $0(x)$ is true for so Len ($0+n+1(x)$) $1+\tan (\operatorname{nol}(x))$ $=1+H 0(x)$ $\forall 0(0+x)$	$(\operatorname{nol}(x))=\# 0(x)$ be arbitrary. $\mathbf{x} \in A$. y do Rol hy do ler by IH

All Binary Strings with no 1's before 0's

$$
\mathrm{A}=\varepsilon\left|0+\mathrm{A}_{0}\right| \mathrm{A}_{1}+1
$$

len : A \rightarrow Int	\#0: A \rightarrow Int	nol: $\mathrm{A} \rightarrow \mathrm{A}$
$\operatorname{len}(\varepsilon) \quad=0$	\#0(ε) $=0$	nol (ε) $=\varepsilon$
$\operatorname{len}(0+a)=1+\operatorname{len}(a)$	\#0(0 + a) = $1+\# 0(a)$	nol $(0+a)=0+n o l(a)$
$\operatorname{len}(\mathrm{a}+1)=1+\operatorname{len}(\mathrm{a})$	\#0(a + 1) = \#0(a)	$\underline{\operatorname{nol}(\mathrm{a}+1)}=\operatorname{nol}(\mathrm{a})$

Claim: Prove that for all $x \in A$, len(nol(x)) $=\# 0(x)$

We go by structural induction on A . Let $\mathrm{A} \in A$ be arbitrary.
Suppose $\operatorname{len}(\operatorname{nol}(x))=\# 0(x)$ is true for some $x \in A$.
Case $A=x+1$:

$$
\begin{aligned}
\operatorname{len}(\text { mol (xH)) } & =\operatorname{len}(\text { nol }(x)) \quad \text { Ly df hol } \\
& =A 0(x) \quad \text { by IH } \\
& =H(x+1) \quad \text { by dof or } H O
\end{aligned}
$$

All Binary Strings with no 1's before 0's

$$
A=\varepsilon\left|0+A_{0}\right| A_{1}+1
$$

len : A \rightarrow Int	\#0: A \rightarrow Int	nol: $\mathrm{A} \rightarrow \mathrm{A}$
$\operatorname{len}(\varepsilon) \quad=0$	\#0(ε) $=0$	nol (ε) $\quad=\varepsilon$
$\operatorname{len}(0+a)=1+\operatorname{len}(a)$	\#0(0 + a) = $1+\# 0(a)$	nol(0 + a) $=0+\operatorname{nol}(\mathrm{a})$
$\operatorname{len}(\mathrm{a}+1)=1+\operatorname{len}(\mathrm{a})$	\#0($\mathrm{a}+1)=$ \#0(a)	nol($\mathrm{a}+1)=\operatorname{nol}(\mathrm{a})$

Claim: Prove that for all $x \in A, \operatorname{len}(\operatorname{nol}(x))=\# 0(x)$
We go by structural induction on A . Let $\mathrm{A} \in A$ be arbitrary.
Case $A=\varepsilon$:

$$
\begin{aligned}
\operatorname{len}(\operatorname{nol}(\varepsilon)) & =\operatorname{len}(\varepsilon) & & {[\text { Def of no1 }] } \\
& =0 & & {[\text { Def of len }] } \\
& =\# 0(\varepsilon) & & {[\text { Def of \#0] }}
\end{aligned}
$$

All Binary Strings with no 1's before 0's

$$
\mathrm{A}=\varepsilon\left|0+\mathrm{A}_{0}\right| \mathrm{A}_{1}+1
$$

len : A \rightarrow Int	\#0: A \rightarrow Int	nol: $\mathrm{A} \rightarrow \mathrm{A}$
$\operatorname{len}(\varepsilon) \quad=0$	\#0(ε) $=0$	nol (ε) $=\varepsilon$
$\operatorname{len}(0+a)=1+\operatorname{len}(a)$	$\# 0(0+a)=1+\# 0(a)$	nol(0 + a $)=0+\operatorname{nol}(\mathrm{a})$
$\operatorname{len}(\mathrm{a}+1)=1+\operatorname{len}(\mathrm{a})$	\#0($\mathrm{a}+1)=$ \#0(a)	nol($\mathrm{a}+1$) $=$ nol(a)

Claim: Prove that for all $x \in A$, len(nol(x)) $=\# 0(x)$

We go by structural induction on \mathbf{A}. Let $\mathrm{A} \in A$ be arbitrary.
Suppose len($\operatorname{nol}(x))=\# 0(x)$ is true for some $x \in A$.
Case $A=0+x$:

$$
\begin{aligned}
\operatorname{len}(\operatorname{nol}(0+x)) & =\operatorname{len}(0+\operatorname{nol}(x)) & & {[\text { Def of no1] }} \\
& =1+\operatorname{len}(\operatorname{nol}(x)) & & {[\text { Def of len }] } \\
& =1+\# 0(x) & & {[\text { By IH }] } \\
& =\# 0(0+x) & & {[\text { Def of \#0] }}
\end{aligned}
$$

All Binary Strings with no 1's before 0's

$$
A=\varepsilon\left|0+A_{0}\right| A_{1}+1
$$

len : A \rightarrow Int	\#0: $\mathrm{A} \rightarrow$ Int	nol: $\mathrm{A} \rightarrow \mathrm{A}$
$\operatorname{len}(\varepsilon) \quad=0$	\#0(ε) $=0$	$\operatorname{nol}(\varepsilon) \quad=\varepsilon$
$\operatorname{len}(0+a)=1+\operatorname{len}(a)$	$\# 0(0+a)=1+\# 0(a)$	nol (0 + a $)=0+\operatorname{nol}(\mathrm{a})$
$\operatorname{len}(\mathrm{a}+1)=1+\operatorname{len}(\mathrm{a})$	\#0($\mathrm{a}+1)=$ (0)(a)	nol($\mathrm{a}+1)=$ nol(a)

Claim: Prove that for all $x \in A$, len(nol(x)) $=\# 0(x)$
We go by structural induction on A . Let $\mathrm{A} \in A$ be arbitrary.
Suppose len(nol(x))=\#0(x) is true for some $x \in A$.
Case $A=x+1$:

$$
\begin{aligned}
\operatorname{len}(\operatorname{nol}(x+1)) & =\operatorname{len}(\text { nol }(x)) & & {[\text { Def of no1 }] } \\
& =\# 0(x) & & {[\text { By IH }] } \\
& =\# 0(x+1) & & {[\text { Def of \#0] }}
\end{aligned}
$$

Recursively Defined Programs (on Lists)

List = [] (a):: L

We'll assume a is an integer.

Write a function

len : List \rightarrow Int
that computes the length of a list.
$\ln (C J)=0$
$\ln (\times \because L)=1+\ln (L)$

Finish the function
append : (List, Int) \rightarrow List
$\operatorname{append}([I, i) \quad=\ldots \quad i \because \subset(J)$
append $(a:: L, i)=\ldots a: \operatorname{aprend}(L, i)$
which returns a list with i appended to the end

Recursively Defined Programs (on Lists)

List $=[] \mid a:=$ L

len : List \rightarrow Int
$\operatorname{len}([I)=0$
$\operatorname{len}(\mathrm{a}:: \mathrm{L})=1+\operatorname{len}(\mathrm{L})$
append : (List, Int) \rightarrow List

Claim: For all lists \mathbf{L}, and integers \mathbf{i}, if $\operatorname{len}(\mathrm{L})=\mathrm{n}$, then len(append $(\mathrm{L}, \mathrm{i}))=\mathrm{n}+1$.

Recursively Defined Programs (on Lists)

len : List \rightarrow Int
$\operatorname{len}(\mathrm{II})=0$
$\operatorname{len}(\mathrm{a}:: \mathrm{L})=1+\operatorname{len}(\mathrm{L})$
append : (List, Int) \rightarrow List
append([I, i) $\quad \mathrm{i}::[\mathrm{I}$
$\operatorname{append}(a:: L, i)=a:: \operatorname{append}(L, i)$
Claim: For all lists \mathbf{L}, and integers \mathbf{i}, if $\operatorname{len}(\mathrm{L})=\mathrm{n}$, then $\operatorname{len}(\operatorname{append}(\mathrm{L}, \mathrm{i}))=\mathrm{n}+1$.

We go by structural induction on List. Let i be an integer, and let L be a list. $\operatorname{Suppose} \operatorname{len}(\mathrm{L})=\mathrm{n}$. And Suppose len $\left(\operatorname{append}\left(L^{\prime}, \mathrm{i}\right)\right)=\mathrm{k}+1$ is true for some list L^{\prime}.
Case L=x:: L^{\prime} :

Recursively Defined Programs (on Lists)

We'll assume a is an integer.
len : List \rightarrow Int
$\operatorname{len}(\mathrm{II})=0$
$\operatorname{len}(\mathrm{a}:: \mathrm{L})=1+\operatorname{len}(\mathrm{L})$
append : (List, Int) \rightarrow List
append([I, i) = i::[I
$\operatorname{append}(\mathrm{a}:: \mathrm{L}, \mathrm{i})=\mathrm{a}:: \operatorname{append}(\mathrm{L}, \mathrm{i})$
Claim: For all lists \mathbf{L}, and integers \mathbf{i}, if $\operatorname{len}(\mathrm{L})=\mathrm{n}$, then $\operatorname{len}(\operatorname{append}(\mathrm{L}, \mathrm{i}))=\mathrm{n}+1$.

Recursively Defined Programs (on Lists)

List = [] | a :: L

len : List \rightarrow Int
$\operatorname{len}([I)=0$
append : (List, Int) \rightarrow List
$\operatorname{len}(a:: L)=1+\operatorname{len}(L)$
Claim: For all lists \mathbf{L}, and integers i , if $\operatorname{len}(\mathrm{L})=\mathrm{n}$, then len(append $(\mathrm{L}, \mathrm{i}))=\mathrm{n}+1$.
We go by structural induction on List. Let i be an integer, and let L be a list. Suppose len $(\mathrm{L})=\mathrm{n}$.
Case L = []:

$$
\operatorname{len}(\operatorname{append}([1, \mathrm{i}))=\operatorname{len}(\mathrm{i}::[\mathrm{II}) \quad[\text { Def of append }]
$$

$$
=1+\operatorname{len}([\mathrm{II}) \quad \text { [Def of len] }
$$

$$
=1+0 \quad \text { [Def of len] }
$$

$$
=1 \quad \text { [Arithmetic] }
$$

Recursively Defined Programs (on Lists)

```
len : List }->\mathrm{ Int
len([I) = 0
len(a :: L) = 1 + len(L)
```

append: (List, Int) \rightarrow List
append([I, i) $\quad=\mathrm{i}::[\mathrm{I}$ $\operatorname{append}(a:: L, i)=a:: \operatorname{append}(L, i)$

Claim: For all lists \mathbf{L}, and integers i , if len(L$)=\mathrm{n}$, then len(append $(\mathrm{L}, \mathrm{i}))=\mathrm{n}+1$.

We go by structural induction on List. Let i be an integer, and let L be a list. Suppose len $(\mathrm{L})=\mathrm{n}$. And Suppose len(append $\left.\left(L^{\prime}, \mathrm{i}\right)\right)=\mathrm{k}+1$ is true for some list L^{\prime}
Case L = x :: L^{\prime} :
$\operatorname{len}\left(\operatorname{append}\left(x:: L^{\prime}, i\right)\right)=\operatorname{len}\left(x:: \operatorname{append}\left(L^{\prime}, i\right)\right) \quad$ [Def of append] $=1+\operatorname{len}\left(\operatorname{append}\left(L^{\prime}, i\right)\right) \quad$ [Def of len] We know by our IH that, for all lists smaller than L, If len $(L)=n$, then $\operatorname{len}(\operatorname{append}(L, i))=n+1$

So, if $\operatorname{len}\left(L^{\prime}\right)=k$, then $\operatorname{len}\left(\operatorname{append}\left(L^{\prime}, i\right)\right)=k+1$

Recursively Defined Programs (on Lists)

We go by structural induction on List. Let i be an integer, and let L be a list. Suppose len $(\mathrm{L})=\mathrm{n}$. And Suppose len(nol($\left.\left.L^{\prime}\right)\right)=\# 0\left(L^{\prime}\right)$ is true for some list L^{\prime}.
Case $\mathrm{L}=x:: L^{\prime}$:
$\operatorname{len}\left(\operatorname{append}\left(x:: L^{\prime}, i\right)\right)=\operatorname{len}\left(x::\right.$ append $\left.\left(L^{\prime}, i\right)\right) \quad[D e f ~ o f ~ a p p e n d]$

$$
=1+\operatorname{len}\left(\text { append }\left(L^{\prime}, i\right)\right) \quad[\text { Def of len }]
$$

We know by our IH that, for all lists smaller than L,
If $\operatorname{len}(\mathrm{L})=\mathrm{n}$, then $\operatorname{len}(\operatorname{append}(\mathrm{L}, \mathrm{i}))=\mathrm{n}+1$
So, if $\operatorname{len}\left(L^{\prime}\right)=k$, then len $\left(\operatorname{append}\left(L^{\prime}, i\right)\right)=k+1$

$$
=1+\mathrm{k}+1 \quad[\mathrm{By} \mathrm{IH}]
$$

Note that $n=\operatorname{len}(L)=\operatorname{len}\left(x:: L^{\prime}\right)=1+\operatorname{len}\left(L^{\prime}\right)=1+k$.

$$
\begin{array}{ll}
=1+(\mathrm{n}-1)+1 & \\
=\mathrm{n}+1 &
\end{array}
$$

