Adam Blank Spring 2017

Foundations of Computing I

Administrivia

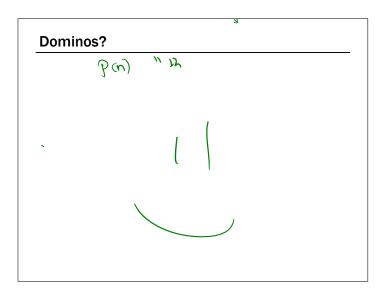
Token verifications will be e-mailed to you tonight!

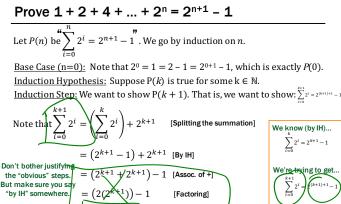
The midterm will be on Wed, May 3 from 4:00pm - 5:30pm in KNE 120.

If you cannot make this time, and you haven't already e-mailed me, you need to tell me right after lecture.

There will be two review sessions:

- Sunday from 12pm 2pm in EEB 105
- Tuesday from 2:30pm 4:30pm Location TBD





[Simplifying] This is exactly RCA

So, the claim is true for all natural numbers by induction.

Our goal is to find a left that looks like the left side of the IH.

Prove 1 + 2 + 3 + ... + n = n(n+1)/2 $=\frac{(k+1)(k+2)}{2}$ This is exactly P(k + 1). So, $P(k) \rightarrow P(k + 1)$. sub-expression of the left that looks like the

left side of the IH.

So, the claim is true for all natural numbers by induction.

Prove
$$1 + 2 + 3 + ... + n = n(n+1)/2$$

Let $P(n)$ be $\sum_{i=0}^{n} i = \frac{n(n+1)}{2}$. We go by induction on n .

<u>Base Case (n=0)</u>: Note that $\sum_{i=0}^{n} i = 0 = \frac{0(0+1)}{2}$, which is exactly P(0). <u>Induction Hypothesis:</u> Suppose P(k) is true for some k ∈ N. <u>Induction Step:</u> We want to show P(k+1). That is, we want to show: $\sum_{i=1}^{k+1} \frac{(k+1)(k+2)}{2}$

$$\begin{split} \text{Note that} \sum_{l=0}^{k+1} i &= \left(\sum_{l=0}^k i\right) + (k+1) \quad \text{[Splitting the summation]} \\ &= \left(\frac{k(k+1)}{2}\right) + (k+1) \quad \text{[By IH]} \\ &= (k+1)\left(\frac{k}{2}+1\right) = (k+1)\left(\frac{k+2}{2}\right) \quad \text{[Algebra]} \\ &= \frac{(k+1)(k+2)}{2} \quad \text{[Algebra]} \end{split}$$

This is exactly P(k + 1). So, $P(k) \rightarrow P(k + 1)$.

So, the claim is true for all natural numbers by induction.

We know (by IH)...

We're trying to get..

Our goal is to find a sub-expression of the left that looks like the left side of the IH.

Prove 3 | $2^{2n} - 1$ for all $n \ge 0$.

Let P(n) be "3 | 2^{2n} "." We go by induction on n.

Base Case (n=0):
$$2^{3.9} - 1 = 2^{3} - 1 = 0 = 3.0$$
. So, 3) $2^{2.9} - 1$

Induction Hypothesis: Snywork (b) is the fore kell.

Induction Step:

$$\frac{\partial^{2}(k_{r})}{\partial x^{2}(k_{r})} - 1 = \frac{\partial^{2}k}{\partial x^{2}}(\lambda^{2}) - 1$$

$$= (3 + 1) \lambda^{2} - 1$$

$$= (3 + 1) \lambda^{2} - 1$$

$$= 3 (4 + 1)$$
We know (by IH)...
$$\frac{\partial^{2}k^{2}}{\partial x^{2}} - 1 = 3 \text{ m}$$
We with means...
$$\frac{\partial^{2}k^{2}}{\partial x^{2}} - 1 = 3 \text{ m}$$
We with the means...
$$\frac{\partial^{2}k^{2}}{\partial x^{2}} - 1 = 3 \text{ m}$$
We represent the second of the seco

Prove 3 | $2^{2n} - 1$ for all $n \ge 0$.

Let P(n) be "3 | $2^{2n} - 1$ ". We go by induction on n.

Base Case (n=0): Note that $2^{2 \cdot 0} - 1 = 2^0 - 1 = 1 - 1 = 0$.

We know $3 \mid 0$, by definition of divides, because $3 \cdot 0 = 0$. So, P(0) is true.

Induction Hypothesis: Suppose P(k) is true for some $k \in \mathbb{N}$.

<u>Induction Step:</u> We want to show P(k + 1). That is, WTS $3 \mid 2^{2(k+1)} - 1$.

Note that
$$2^{2(k+1)} - 1 = 2^{2k+2} - 1$$

$$= (2^{2k})(2^2) - 1$$
$$= (2^{2k} - 1 + 1)(2^2) - 1$$

[Algebra] [Algebra]

[Algebra]

We know (by IH)... $3 \mid 2^{2k} - 1$...which means... $2^{2k} - 1 = 3i$

By IH, we know 3 | 2^{2k} – 1. So, by definition of divides, we know $2^{2k} - 1 = 3j$ for some j.

$$= (3j + 1)(4) - 1 = 3(4j + 1)$$
 [Algebra]

So, by definition of divides, $3 \mid 2^{2(k+1)} - 1$.

This is exactly P(k + 1). So, $P(k) \rightarrow P(k + 1)$.

So, the claim is true for all natural numbers by induction.

We're trying to get.. $3 \mid 2^{2(k+1)} - 1$...which is true if... $2^{2(k+1)} - 1 = 3k$

Prove $3^n \ge n^2$ for all $n \ge 3$.

Let P(n) be " $3^n \ge n^2$ ". We go by induction on n.

Base Case (n=3):

Induction Hypothesis:

Induction Step: We want to show P(k + 1).

Note that

We know (by IH)...

.which is true if. 2 = (mr) = 31

We're trying to get..

This is exactly P(k + 1). So, $P(k) \rightarrow P(k + 1)$. So, the claim is true for all $n \ge 3$ by induction.

Prove $3^n \ge n^2$ for all $n \ge 3$.

Let P(n) be " $3^n \ge n^2$ ". We go by induction on n.

Base Case (n=3): Note that $3^3 = 27 \ge 9 = 3^2$. So, P(3) is true.

<u>Induction Hypothesis:</u> Suppose P(k) is true for some k ≥ 3.

Induction Step: We want to show P(k + 1).

Note that
$$3^{k+1} = 3(3^k)$$
 [Algebra]
 $\geq 3(k^2)$ [By IH]
 $= k^2 + k \cdot k + k^2$ [Algebra]
 $\geq k^2 + 2 \cdot k + k^2$ [k \ge 2]
 $\geq k^2 + 2 \cdot k + 1^2$ [k \ge 1]
 $\geq k^2 + 2k + 1$

We know (by IH)... $3^k \ge k^2$

We're trying to get...

 $3^{k+1} \ge (k+1)^2$

 $= k^2 + 2k + 1$

This is exactly P(k + 1). So, $P(k) \rightarrow P(k + 1)$. So, the claim is true for all $n \ge 3$ by induction.

Prove $2n^3 + 2n - 5 \ge n^2$ for all $n \ge 2$.

Let P(n) be " $2n^3 + 2n - 5 \ge n^2$ ". We go by induction on n.

Base Case (n=2):

<u>Induction Hypothesis:</u>

Induction S We want to show P(k + 1).

For Later!!!!

This is exactly P(k + 1). So, $P(k) \rightarrow P(k + 1)$. So, the claim is true for all $n \ge 2$ by induction. We know (by IH)... We're trying to get...

Prove $2n^3 + 2n - 5 \ge n^2$ for all $n \ge 2$.

Let P(n) be " $2n^3 + 2n - 5 \ge n^2$ ". We go by induction on n.

Base Case (n=2): Note that $2(2^3) + 2(2) - 5 = 15 \ge 4 = 2^2$

<u>Induction Hypothesis:</u> Suppose the claim is true for some $k \geq 2$.

Induction Step: We want to show P(k + 1).

Note that
$$2(k+1)^3 + (2k+1) - 5 = 2(k+1)(k^2 + 2k + 1) + (2k+1) - 5$$

[Algebra]
$$= 2(k^3 + 2k^2 + k + k^2 + 2k + 1) + (2k+1) - 5$$

$$= 2k^3 + 4k^2 + 2k + 2k^2 + 4k + 2 + (2k+1) - 5$$

$$= 2k^3 + 6k^2 + 6k + 2 + (2k+1) - 5$$

$$= (2k^3 + 2k - 5) + 6k^2 + 6k + 3$$

$$= (2k^3 + 2k - 5) + 6k^2 + 6k + 3$$

$$= (k^2 + 2k + 1) + 6k^2 + 4k + 3$$
[Algebra]
$$= (k+1)^2 + 6k^2 + 4k + 3$$

$$= (k+1)^2 + 6k^2 + 4k + 3$$
We know (by IH)...
$$2k^3 + 2k - 5 \ge k^2$$

This is exactly P(k + 1). So, $P(k) \rightarrow P(k + 1)$.

So, the claim is true for all $n \ge 2$ by induction.

We're trying to get... $2(k+1)^3+2(k+1)-5 \ge (k+1)^2$ $(k+1)^2 = k^2 + 2k + 1$

CSE 311: Foundations of Computing

Lecture 15: Strong Induction

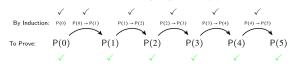
Induction Is A Rule of Inference

Domain: Natural Numbers

 $P(0) \\ \forall k (P(k) \rightarrow P(k+1))$

 $\therefore \forall n P(n)$

How does this technique prove P(5)?



First, we prove P(0).

Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(0) \rightarrow P(1)$.

Since P(0) is true and $P(0) \rightarrow P(1)$, by Modus Ponens, P(1) is true.

Since $P(n) \rightarrow P(n+1)$ for all n, we have $P(1) \rightarrow P(2)$.

Since P(1) is true and $P(1) \rightarrow P(2)$, by Modus Ponens, P(2) is true.

Domain: Natural Numbers

Induction Is A Rule of Inference...Again

1.	P(0)	("Given")
2.	$\forall n \ (P(n) \rightarrow P(n+1))$	("Given")
3.	P(1)	(MP: 2, 1)
4.	P(2)	(MP: 2, 3)
5.	P(3)	(MP: 2, 4)
6	P(4)	(MP: 2.5)

Domain: Natural Numbers

Induction Is A Rule of Inference

"Induction"	Notice how when we			
1. P(0)	("Given")	use regular induction,		
$2. \forall n \ (P(n) \to P(n+1))$	("Given")	we're already proving		
3. P(1)	(MP: 2, 1)	the things necessary to		
4. P(2)	(MP: 2, 3)	use strong induction.		
5. P(3)	(MP: 2, 4)			
6. P(4)	(MP: 2, 5)	This is no extra work with a benefit!		
"Strong Induction"				

1.	P(0)	("Given")
2.	$\forall n ((P(0) \land P(1) \land \dots \land P(n) \rightarrow P(n+1))$	("Given")
3.	P(1)	(MP: 2, 1)
4.	P(2)	(MP: 2, 1, 3)
5.	P(3)	(MP: 2, 1, 3, 4)
6	P(4)	(MP·2 1 3 4 5

Strong Induction

$$P(0)$$

$$\forall k \left(\left(P(0) \land P(1) \land P(2) \land \dots \land P(k) \right) \rightarrow P(k+1) \right)$$

 $\therefore \forall n P(n)$

Strong Induction English Proof

- 1. By induction we will show that P(n) is true for every $n \ge 0$
- **2.** Base Case: Prove P(0)
- 3. Inductive Hypothesis: Assume that for some arbitrary integer $k \ge 0$, P(j) is true for every j from 0 to k
- 4. Inductive Step: Prove that P(k+1) is true using the Inductive Hypothesis (that P(j) is true for all values $\leq k$)
- 5. Conclusion: Result follows by induction

Every $n \ge 2$ can be expressed as a product of primes.

Let P(n) be " $n = p_0 p_1 \cdots p_j$, where p_0, p_1, \dots, p_j are prime."

We go by strong induction on n.

Base Case (n=2):

Induction Hypothesis:

Induction Step: We go by cases.

We know (by IH)...

All numbers smaller than k can be expressed as a product of primes.

We're trying to get...

k can be expressed as a product of primes.

Every $n \ge 2$ can be expressed as a product of primes.

Let P(n) be " $n=p_0p_1\cdots p_j$, where p_0,p_1,\ldots,p_j are prime." We go by induction on n.

<u>Base Case (n=2):</u> Note that 2 is prime (which means it's a product of primes). <u>Induction Hypothesis:</u> Suppose that P(2), P(3), ..., P(k – 1) are true for some $k \ge 2$.

Induction Step: We go by cases.

Case 1 (k is prime):

Then, since \boldsymbol{k} is prime, \boldsymbol{k} is a product of primes.

Case 2 (k is composite):

Then, by definition of composite, we have non-trivial 1 < a, b < k such that k = ab. Since a and b are between b and b and b are know b and b are true. So, we have:

 $a = p_0 p_1 \cdots p_j$ and $b = p_{j+1} p_{j+2} \cdots p_{j+\ell}$

Then, $k = ab = p_0 p_1 \cdots p_j p_{j+1} p_{j+2} \cdots p_{j+\ell}$

So, k can be expressed as a product of primes.

So, P(n) is true for all $n \ge 2$ is true by induction.

We know (by IH)...

All numbers smaller than k can be expressed as a product of primes.

We're trying to get..

k can be expressed as a product of primes.