CSE 311: Foundations of Computing I
Induction Verification: Bad Proof
∇.

Claim: Prove $3^{n} \geq n^{2}$ for all $n \geq 3$.

So, the base case is true.
Induction Hypothesis: Suppose $P(k)$ is true for arbitrar $|\mathbb{N}| \mathbb{N}$. $n^{2} 1 m k \geq 3$. D Induction Step: Then, $3^{k+1}=3\left(3^{k}\right)>3\left(k^{2}\right)>k^{2}+2 k+1=(k+1)^{2}$, by inequalities and factoring. b) TD

Since $P(k) \rightarrow P(k+1)$ for arbitrary k, i.t is true for all $k \geq 3$, by induction.

