CSE 311: Foundations of Computing I

Parity/Rationals Annotated Proofs

Relevant Definitions

a is even
There exists an $\ell \in \mathbb{Z}$ such that $a=2 \ell$.

a is odd
There exists an $\ell \in \mathbb{Z}$ such that $a=2 \ell+1$.

Our First Proof

Prove that if $x \in \mathbb{Z}$ is odd, then x^{2} is odd.

Proof

Suppose a be an arbitrary odd number.
Then, note that, since a is odd, it follows that
$a=2 j+1$ for some $j \in \mathbb{Z}$.
Note that $a^{2}=(2 j+1)^{2}=4 j^{2}+4 j+1=$
$2\left(2 j^{2}+2 j\right)+1$ by our characterization of a above, multiplying out the square, and factoring out the 2.

Then, since we have found an integer (namely, $2 j^{2}+2 j$) that satisfies the definition of odd, it follows that a^{2} is odd.

Commentary \& Scratch Work
Remove the $\forall \ldots$. . Note that we combined the steps for removing the \forall and the \rightarrow by saying "suppose" and "arbitrary" in the same phrase.

The only thing left to do is apply definitions.

Our result is in terms of a^{2}; so, we need to introduce it. We must be careful to actually justify our steps. Saying "by math" is not acceptable.

We found the "form" we wanted; so, we "appeal" to the definition to conclude.

Example Contradition Proof

Prove that no integer is both even and odd.

Proof
Let x be an arbitrary integer

We go by contradiction.

Suppose, for contradition, that x is even and odd.

Commentary \& Scratch Work

For our own consideration, it helps to translate the claim into logical notation: $\forall x \neg(\operatorname{Even}(x) \wedge$ Odd $(x))$. Then, we clearly see that it's a "forall" claim. So, define our variables...

We're left with trying to prove the claim $" \neg(\operatorname{Even}(x) \wedge \operatorname{Odd}(x))$ ". Our first thought should be "try deMorgan" which gets us " $\neg \operatorname{Even}(x) \vee$ $\neg \operatorname{Odd}(x)$ ". Notice how this didn't help! We still have a bunch of extra "negations" in our claim. When a claim is phrased "in the negative" like this, and we're trying to prove it, that's often a "clue" that contradiction makes sense.
So, alert our proof reader that this is what we're doing.

Since we've decided to go by contradition, we assert exactly the opposite of the claim.

Then, $x=2 k$ for some $k \in \mathbb{Z}$ and $x=2 \ell+1$ for some $\ell \in \mathbb{Z}$.

Putting these together, we see $2 k=2 \ell+1$. So, $k=\ell+\frac{1}{2}$.

Since ℓ is an integer, and $\frac{1}{2}$ is not, it must be the case that $\ell+\frac{1}{2}$ is also not an integer.

It follows that k is not an integer, which is a contradiction, because we assumed it was one!

So, no integer is both even and odd!

Now, we proceed like normal. We use all of our definitions and attempt to make them contradict each other.
It is extremely tempting to use the "same" variable for k and ℓ. Don't be fooled!!! These are \exists Elim applications which means they always need to be NEW variables!!!

Put all of our definitions together into as few statements as possible. In this case, the common piece is x.

Okay. We can "see" that something is wrong now (intuitively, $\frac{1}{2}$ does not belong here, since we're working with integers).
The hard part here is explicitly explaining it. Our approach is to show one side of the equation must be an integer and the other side must not be an integer which is clearly bogus.

Explain what the actual contradiction is.
Conclude our proof with what we just showed!

Rationals!

Prove that if $x, y \in \mathbb{Q}$, then $x y \in \mathbb{Q}$.

Proof
Let $x, y \in \mathbb{Q}$ be arbitrary.
Then, choose $p_{x}, q_{x}, p_{y}, q_{y} \in \mathbb{Z}$ where $q_{x} \neq 0$ and $q_{y} \neq 0$ such that $x=\frac{p_{x}}{q_{x}}$ and $y=\frac{p_{y}}{q_{y}}$.

Then, $x y=\left(\frac{p_{x}}{q_{x}}\right)\left(\frac{p_{y}}{q_{y}}\right)=\frac{p_{x} p_{y}}{q_{x} q_{y}}$, multiplying together the fractions.

Then, since the product of two integers is an integer, $p_{x} p_{y}$ is an integer. Also, since the product of two non-zero integers is an integer, $q_{x} q_{y}$ is a non-zero integer. It follows that $x y$ is rational, by definition.

Commentary \& Scratch Work

Remove the $\forall \ldots$...

Blindly apply the definitions that we get from our instantiation of the variables.

We are interested in a property of $x y$; so, we should introduce it and start manipulating it.

Conclude what we want by using the definition.

