
CSE 311: Foundations of Computing I

Parity/Rationals Annotated Proofs

Relevant Definitions
a is even
There exists an ` ∈ Z such that a = 2`.

a is odd
There exists an ` ∈ Z such that a = 2`+ 1.

Our First Proof
Prove that if x ∈ Z is odd, then x2 is odd.

Proof Commentary & Scratch Work

Suppose a be an arbitrary odd number.
Remove the ∀. . . . Note that we combined the steps
for removing the ∀ and the → by saying “suppose”
and “arbitrary” in the same phrase.

Then, note that, since a is odd, it follows that
a = 2j + 1 for some j ∈ Z.

The only thing left to do is apply definitions.

Note that a2 = (2j + 1)2 = 4j2 + 4j + 1 =
2(2j2+2j)+1 by our characterization of a above,
multiplying out the square, and factoring out the
2.

Our result is in terms of a2; so, we need to intro-
duce it. We must be careful to actually justify our
steps. Saying “by math” is not acceptable.

Then, since we have found an integer (namely,
2j2 + 2j) that satisfies the definition of odd, it
follows that a2 is odd.

We found the “form” we wanted; so, we “appeal”
to the definition to conclude.

Example Contradition Proof
Prove that no integer is both even and odd.

Proof Commentary & Scratch Work

Let x be an arbitrary integer.

For our own consideration, it helps to translate
the claim into logical notation: ∀x ¬(Even(x) ∧
Odd(x)). Then, we clearly see that it’s a “forall”
claim. So, define our variables. . .

We go by contradiction.

We’re left with trying to prove the claim
“¬(Even(x) ∧ Odd(x))”. Our first thought should
be “try deMorgan” which gets us “¬Even(x) ∨
¬Odd(x)”. Notice how this didn’t help! We still
have a bunch of extra “negations” in our claim.
When a claim is phrased “in the negative” like this,
and we’re trying to prove it, that’s often a “clue”
that contradiction makes sense.
So, alert our proof reader that this is what we’re
doing.

Suppose, for contradition, that x is even and odd.
Since we’ve decided to go by contradition, we as-
sert exactly the opposite of the claim.



Then, x = 2k for some k ∈ Z and x = 2`+ 1 for
some ` ∈ Z.

Now, we proceed like normal. We use all of our
definitions and attempt to make them contradict
each other.
It is extremely tempting to use the “same” variable
for k and `. Don’t be fooled!!! These are ∃ Elim
applications which means they always need to be
NEW variables!!!

Putting these together, we see 2k = 2` + 1. So,
k = `+ 1

2 .

Put all of our definitions together into as few state-
ments as possible. In this case, the common piece
is x.

Since ` is an integer, and 1
2 is not, it must be the

case that `+ 1
2 is also not an integer.

Okay. We can “see” that something is wrong now
(intuitively, 1

2 does not belong here, since we’re
working with integers).
The hard part here is explicitly explaining it. Our
approach is to show one side of the equation must
be an integer and the other side must not be an
integer which is clearly bogus.

It follows that k is not an integer, which is a con-
tradiction, because we assumed it was one!

Explain what the actual contradiction is.

So, no integer is both even and odd! Conclude our proof with what we just showed!

Rationals!
Prove that if x, y ∈ Q, then xy ∈ Q.

Proof Commentary & Scratch Work

Let x, y ∈ Q be arbitrary. Remove the ∀. . . .

Then, choose px, qx, py, qy ∈ Z where qx 6= 0 and
qy 6= 0 such that x =

px
qx

and y =
py
qy

.
Blindly apply the definitions that we get from our
instantiation of the variables.

Then, xy =

(
px
qx

)(
py
qy

)
=

pxpy
qxqy

, multiplying

together the fractions.

We are interested in a property of xy; so, we should
introduce it and start manipulating it.

Then, since the product of two integers is an in-
teger, pxpy is an integer. Also, since the product
of two non-zero integers is an integer, qxqy is a
non-zero integer. It follows that xy is rational, by
definition.

Conclude what we want by using the definition.


