Adam Blank Spring 2017

i

Foundations of
Computing |

Predicate Definitions

Even(x)=3y (x = 2y)
Even and Odd 0ddix) =3y (x = 2y 4 1)

Domain of Discourse

Integers

Prove: “The square of every odd number is odd.”

Predicate Definitions

Even(x)=3y (x = 2y)
Even and Odd 0ddix) =3y (x = 2y 4 1)

Domain of Discourse
Integers

Initialize variables. Let a be an arbitrary even
[Header/Intro of the proof] number.

Then, a = 2c for some c, by
definition of even.

Squaring both sides, we see a’=
4c? = 2(2c?).

Explain why a? is even.
[Body of the proof]

It follows that a?is even by
definition of even.

Conclude the sub-proof
[“Return” “Inner Result”]

A A

Since a was arbitrary, we’ve
shown the square of every even
number is even.

Conclude the proof
[“What have we shown?”

A

Now, Prove “The square of every odd number is odd.”

Predicate Definitions - -
Domain of Discourse

Even(x)=3y (x = 2y)
Even and Odd Odd(x) = 3y (x = 2y +1) Integers

Mx (MO H b)\

Prove: “The s dd number is odd.”

Let x be an arbitrary odd number.
Then, x = 2k+1 for some integer k (depending on x).
Therefore, x2= (2k+1)2 = 4k2+ 4k + 1 = 2(2k2 + 2k) + 1.

Since 2k?+2k is an integer, x? is odd.

“How can | USE a statement?”

Known Statements

Domain of Discourse

Vx (Even(x) v 0dd(x)) [Integers
hoose a particularx we care about. O~ Y
Fvan(s) v 0M(S))

Z)E:h/f'

dy (16 = 4y)

Assert that one exists. *We can’t assert any other properties though!!l!*

AL) (¥,) ¢ fAfT

“How can | USE a statement?”

Known Statements

Domain of Discourse

Vx (Even(x) v 0dd(x)) T Integers

Choose a particularx we care about.

“Since every integer is either even or odd, it follows that 5 is even or odd...”

dy (16 = 4y)

Assert that one exists. *We can’t assert any other properties though!!l!*

“Choose z such that 16 = 4z...”

“How can | PROVE a statement?”

Unknown Statements

(16 —_ 4‘y I Domain of Discourse
] Integers
Suppose the Teft side and prove the rig

DINCIIY 3\3((S 4 (me A

| { SUR. -D\(363, <a) B S Awn
Lok 4 =20 (W5 24) -

Vx ((Ely (x = 4y)) > 3y (x = 2y)))

Define an “arbitrary x” and prove it for that x.

“How can | PROVE a statement?”

Unknown Statements

(Hy (16 = 4y)) — (Hy (16 = 2)7)) LDomali:thgZi::ourse

Suppose the left side and prove the right side.

“Suppose 16 = 4y for some y. Then, note that 16 = 2(2y). Thus, there is
an x such that 16 = 2x (namely, 2y).”

Vx ((Ely (x = 4y)) > 3y (x = 2y)))

Define an “arbitrary x” and prove it for that x.

“Let x be arbitrary. Suppose x = 4y for some y. Then, note that x = 2(2y).
Thus, there is a z such that x = 2z (namely, 2y).”

Counterexamples

To disprove VYx P(x) prove = Vx P(x) :
« Vx P(x) = 3x—P(x)
* To prove the existential, find an x for which P(x) is false
* This example is called a counterexample.

Counterexample...example

Disprove “Every non-negative integer has another number smaller than‘it.”

T i
Vx 3y (y < x)

Tellthe readerthat — Jy\ya claim vx 3y (y < x) is false. So, we

we’re about to use a .]

“counterexample”. show the negation % (y = x), is true.

Use 3 Intro. { (ap“-(f ~ 30,
Use V Intro. { L@/\r Y) \'Km M\D =" '/",-

Prove the V
statement.

Conclude the
proof. {

Counterexample...example

Disprove “Every non-negative integer has another number smaller than it.”

Vx Ay (y < x)
TeI! the reader that We claim Vx Ely (y : So, we
we’re about to use a .]
“counterexample’. show the negatioff, 3x Vy (y = x))is true.
Use 3 Intro. {Consider x = 0.
Use V Intro. {Let y be arb@
Prove the v Since y is non-negative,y = 0. So, the claim

statement. .
IS true.

Conclude the

proof. {Thus, the original claim is false.

Reminder for HW

For Elim ...

Your “c” has to be new (e. g. cannot be used previously in the proof)
You should say what variables your “c” depends on.

The order you use Elim 3 and Elim V in DOES matter!

Reminder: 3x Vy P(x,y) IS DIFFERENT FROM Vy3x P(x,y)

Proof by Contrapositive: One Strategy for implications

If we assume —-q and derive —p, then we have
proven —q — —p, which is the same as p — q.

1.1. -q Assumption

1.3. =p
1. -q— -p Direct Proof Rule

@ Contrapositive: 1
G

Proof by Contradiction: One way to prove —-p

If we assume p and derive F (a contradiction), then
we have proven —p.

1.1. p Assumption

1.3. F

1. p—F Direct Proof rule
2. -pVvF Law of Implication: 4

3. —p Identity: 5

Predicate Definitions

Even(x)=3y (x = 2y)
Even and Odd 0ddix) =3y (x = 2y 4 1)

Domain of Discourse
Integers

Prove: “No integer is both even and odd.”

English proof: — _dx (Even(x)AOdd(x))
@ven(x)/@dd(x))
b oC ot o) ks
Aoos &0 Gadthn 3 x5 ol
WD QWA

/)\ZQK‘H)%72(

_)
A 53¢ 5 k*lo(

Predicate Definitions

Even(x)=3y (x = 2y)
Even and Odd 0ddix) =3y (x = 2y 4 1)

Domain of Discourse
Integers

Prove: “No integer is both even and odd.”
English proof: - dx (Even(x)AO0dd(x))
=Vx = (Even(x)AOdd(x))

Let x be an arbitrary integer. We go by contradiction.
Suppose that x is both even and odd. Then x=2k for
some integer k and x=2m+1 for some integer m.
Therefore 2k=2m+1 and hence k=m+.

But two integers cannot differ by %2 so this is a
contradiction. So, no integer is both even and odd.

Domain of Discourse

Rational Numbers | RealNumbers

* A real number x is rational iff there exist integers p
and g with q=0 such that x=p/q.

Rational(x) = dp dq ((x=p/q) A Integer(p) A Integer(q) A g=0)

.] Domain of Discourse
Rationality | Real Numbers
Predicate Defjnitions -~
; Rational()qﬁ Jp dq ((X)— 2 A Integer(p) A Integer(g) Aq # 0 \

Prove: “If x and y are rational then xy is ratlorT‘f

(-

:C: s %p@ | @ @) > R\ éx“».

Ly ~ e (b mlhoaf XY=

<>w Coy T, Py Tyl oS
€

S ol:#’)) 75:70 M’A/X q
Sy «ﬁAy

Domain of Discourse

Rationality | RealNumbers

Predicate Definitions
Rational(x)=3p 3q ((x = g/\ Integer(p) A Integer(qg) Aq # 0

Prove: “If x and y are rational then xy is rational.”

Let x and y be rational numbers. Then, x = a/b for some
integers a, b, where b=0, and y = c/d for some integers
c,d, where d=0.

Note that xy = (ac)/(bd).

Since b and d are both non-zero, so is bd; furthermore,
ac and bd are integers. It follows that xy is rational, by
definition of rational.

Proofs

 Formal proofs follow simple well-defined rules and
should be easy to check
— In the same way that code should be easy to execute

* English proofs correspond to those rules but are
designhed to be easier for humans to read
— Easily checkable in principle

* Simple proof strategies already do a lot

— Later we will cover a specific strategy that applies to
loops and recursion (mathematical induction)

CSE 311.: Foundations of Computing

Lecture 9: Set Theory

Sets

e Mathematical sets are a lot like Java sets:
— Set<T> s = new HashSet<T> () ;

— ...with the following exceptions:
*.‘They are unt : {“string”, 123, 1. id set
 Theyare immutable: you can’t add/remove from

them S=7¢ 3133

 They are built differently

 They have one fundamental operation;

Contains: x € S k 55133
| € 213

Some Common Sets

N is the set of Natural Numbers; N ={0, 1, 2, ...}

Z is the set of Integers; 72={...,-2,-1,0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. %, -17, 32/48
R is the set of Real Numbers; e.g. 1, -17, 32/48, it

[n] is the set {1, 2, ..., n} when n is a natural number
{} =D is the empty set; the only set with no elements

EXAMPLES

Are these sets?

A={1,1}

B={1, 3, 2}

Cc ={L], 1}

D ={{}, 17}

E={1,2, 7, cat, dog, I, o}

We say 2<E; 3 E.
L1 ~¢'s
9,3,23 =20,33)

Some Common Sets

N is the set of Natural Numbers; N ={0, 1, 2, ...}

Z is the set of Integers; 72={...,-2,-1,0, 1, 2, ...}

Q is the set of Rational Numbers; e.g. %, -17, 32/48
R is the set of Real Numbers; e.g. 1, -17, 32/48, it

[n] is the set {1, 2, ..., n} when n is a natural number
{} =D is the empty set; the only set with no elements

EXAMPLES

Are these sets?

A={1,1}

B={1, 3, 2}

Cc ={L], 1}

D ={{}, 17}

E={1,2, 7, cat, dog, O, a}

We say 2<E; 3 zE.

They’re all sets.
Note {1} = {1, 1}.

Definition: Equality

A and B are equal if they have the same elements

A=B =V x(x€EA <= x EB)

boolean equal(Set A, Set B) { A={1,2, 3}
boolean result = true; B={3, 4,5}
for (x : A) { C=1{3,4}

if (x € B) { result = false; }
} Are any of
for (x : B) { A, B, C
if (x € A) { result = false; } equal?

¥

return result;

Definition: Equality

A and B are equal if they have the same elements

A=B =V x(xEA < x & B)

boolean equal(Set A, Set B)
boolean result = true;
for (x : A) {

if (x € B) { result

}
for (x : B) {

if (x € A) { result
}

return result;

{

false; }

false; }

A=1{4,3, 3}
B=1{3,4,3}
C=1{3,4}

Are any of
A, B,C
equal?

They all are!
(dups, order don’t matter!)

Definition: Subset

A is a subset of B if every element of A is alsoin B
ACB=V x(xEA— xEB)

boolean subset(Set A, Set B) {

boolean result = true; A=11,2, 3}
for (X . A) { (B::Eg'iis}
if (x ¢ B) { result = false; } 7
}
return result;
¥
QUESTIONS
@ C A?
ACB?

CCB?

Definition: Subset

A is a subset of B if every element of A is alsoin B

ACB=V x(xEA— xEB)

boolean subset(Set A, Set B) {

boolean result = true; A=11,2, 3}
for (X . A) { (B::i:giiis}
if (x ¢ B) { result = false; } 7

}

return result;

QUESTIONS
@ C A? Yes. In fact, & C X for any set X.

ACB? No. 3 A, but that’s not true for B.
CEB? Yes,3€B,4<B.

Definitions

A and B are equal if they have the same elements

A=B =V x(x€EA <= x EB)

* Ais asubsetof B if every element of Ais alsoin B

ACB=V x(xEA—xEB)

* Note: (A=B)=(A<SB) A(BSA

Building Sets from Predicates

* The following says “S is the set of all x's where P(x)

Is true. S = {x : P(x)}

* The following says “those elements of A for which

P(x) is true.”

S=ixEA:Px) &2 xL0)

W (v eP) %<
* “All the real numbers less than one.”
{% X<l on /xél?g =~ {’Xflﬁ.‘ ’>((I3

 “All the powers of two that happen to be odd.”

e “All natural numbers between1 and n” (“brackets n”)
. SXEVI 1 dx<n

Building Sets from Predicates

* The following says “S is the set of all x’s where P(x)

IS true. S = {x : P(x)}

* The following says “those elements of A for which

P(x) is true.”
S={x&€A:P(x)}

* “All the real numbers less than one.”
e xeR:x<1}

e “All the powers of two that happen to be odd.”
e {xeN:3Jk (x=2k+1) AJj (x=2))}

e “All natural numbers between1 and n” (“brackets n”)
e [n]={xeN:1<x<n}

Set Operations

AUB={x:(x€A)V(x €B)} Union

ANB={x:(x€A)A(x €B)} |Intersection

A\B={x:(x€A)A(x & B)} | SetDifference

A={1,2,3}
B=1{4,5,6)
C=1{3,4)

QUESTIONS
Using A, B, C and set operations, make...
[6] =
{3} =
{1,2} =

Set Operations

AUB={x:(x€A)V(x €B)} Union

ANB={x:(x€A)A(x €B)} |Intersection

A\B={x:(x€A)A(x & B)} | SetDifference

A={1,2,3}
B=1{3,5, 6}
C=1{3,4)

QUESTIONS
Using A, B, C and set operations, make...
[6]=AUB=AUBUC
{3}=C\B=ANnB
{1,2} =ANC

More Set Operations

ADB={x:(x€eA) P (x€e€B)}

Symmetric

A={x:x¢A)}

(with respect to universe U)

Difference

Complement

{1 2,3} QUESTIONS
{1, 4, 2, 6} Let S ={1, 2}. B
11,2,3,4} | | If the universe is A, then S is...

O @ >
o

If the universe is B, then S is...
If the universe is C, then S is...

More Set Operations

ADB={x:(x€eA) P (x€e€B)}

Symmetric

A={x:x¢&A)

(with respect to universe U)

Difference

Complement

{1 2,3} QUESTIONS
{1,4,2,6} | [LetS ={1, 2}. B
11,2,3,4} | | If the universe is A, then S is...

O @ >
o

If the universe is B, then S is...
If the universe is C, then S is...

A\S =|{3}
B\S =|{4, 6}
C\S =({3, 4}

Power Set

* Power Set of a set A = set of all subsets of A
P(A)={B:B<S A}

o Let Days ={M, W, F}. Suppose we wanted to know the possible ways that we

could allocate class days to be cancelled. Let’s call this set P (Days).

e.s. P(Days) = { e.8. P(D) =7

Power Set

* Power Set of a set A = set of all subsets of A
P(A)={B:B<S A}

o Let Days ={M, W, F}. Suppose we wanted to know the possible ways that we

could allocate class days to be cancelled. Let’s call this set P (Days).

e.g. P(Days) = { e.g. P(D) = {0}
D,
M}, {W}{F},
M, W} {W,F},{M, F},
{M,W,F}

}

Cartesian Product

AXB={(ab):a€AbeB}

R X R is the real plane. You’ve seen ordered pairs before.
These are just for arbitrary sets.
Z. X 7. is “the set of all pairs of integers”

If A={1,2},B={a, b, c}, then A X B ={(1,a), (1,b), (1,c),
(2,a), (2,b), (2,c)}.

Ax@={(a,b):a€A AbeP}={(a,b):a€A ANF}=0

Russell’s Paradox

S={x:x€&x}

Suppose for contradiction that S € S...

Russell’s Paradox

S={x:x€&x}

Suppose for contradiction that S € S. Then, by definition of
S,S &S, but that’s a contradiction.

Suppose for contradiction that S € S. Then, by definition of
the set comprehension, S € S, but that’s a contradiction.

This is reminiscent of the truth value of the statement “This
statement is false.”

It's Boolean algebra again

 Definition for U based on v

e Definition for N based on A

« Complement works like -

De Morgan’s Laws

AUB=ANB

ANB=AUB

Proof technique:

To show C = D show
xe C—xe&Dand
xeED—-=xeC

Distributive Laws

ANBUC)=ANB)U(ANC)
AUBNC)=(AUB)Nn (4 UC(C)

oy (o
>

Representing Sets Using Bits

* Suppose universe U is {1,2, ...,n}
 Can represent set B € U as a vector of bits:
bib, ...b, where b; =1wheni€B
b; =0wheni & B
— Called the characteristic vector of set B

 @Given characteristic vectors for A and B
— What is characteristic vector for AU B? AN B?

UNIX/Linux File Permissions

e 1s -1
drwxr-xr-x ... Documents/

-rw-r--r—-- ... filel

e Permissions maintained as bit vectors
— Letter means bit is 1
— “=" means bit is O.

Bitwise Operations

01101101 Java: z=x|y

v 00110111
01111111

00101010 Java: z=x&y
A 00001111
00001010

01101101 Java: z=x"y

@ 00110111
01011010

A Useful Ildentity

* If xand y are bits: (X Dy) Py ="?

* What if x and y are bit-vectors?

Private Key Cryptography

* Alice wants to communicate message secretly to
Bob so that eavesdropper Eve who hears their
conversation cannot tell what Alice’s message is.

* Alice and Bob can get together and privately share
a secret key K ahead of time.

. decrypt

plaintext plaintext

|
I
|
> key |——— RECEIVER !
I
|
|

message

message

o ————————

SENDER————>] key ||
|

One-Time Pad

* Alice and Bob privately share random n-bit vector K
— Eve does not know K

* Later, Alice has n-bit message m to send to Bob

— Alice computes C=m® K
— Alice sends C to Bob
— Bob computes m =C ® K whichis(m ® K) ® K

* Eve cannot figure out m from C unless she can
guess K

