## CSE 311: Foundations of Computing

Lecture 27a: Relations and Directed Graphs


## Epsilon Closure?

One of the major reasons that epsilonClosure was so difficult is that we lacked a way of communicating ideas about the "arrows" in an FSM

## Epsilon Closure?

Last lecture, we talked about functions as a way of discussing infinity.

Now, let's generalize functions.

$$
f(x)=y
$$

## Final Exam

Final Exam Practice is up on the website. We will have two review sessions:

- Thursday from 4:30-7:00 in EEB 105
- Sunday from 1:00-4:00 in EEB 105

Enjoy!

## Epsilon Closure?

Remember, this course is about the FOUNDATIONS for computing.

We want to give you clean, concise ways of talking about things.

## Relations

Let $A$ and $B$ be sets,
$A$ binary relation from $A$ to $B$ is a subset of $A \times B$


[^0]$A$ binary relation on $A$ is a subset of $A \times A$

## Relations You Already Know!

$\geq$ on $\mathbb{N} \quad R \subseteq A \times A$
That is: $\{(\mathrm{x}, \mathrm{y}): \mathrm{x} \geq \mathrm{y}$ and $\mathrm{x}, \mathrm{y} \in \mathbb{N}\}$
< on $\mathbb{R}$
That is: $\{(\mathrm{x}, \mathrm{y}): \mathrm{x}<\mathrm{y}$ and $\mathrm{x}, \mathrm{y} \in \mathbb{R}\}$
$=$ on $\Sigma^{*}$
That is: $\left\{(x, y): x=y\right.$ and $\left.x, y \in \sum^{*}\right\}$
$\subseteq$ on $\mathrm{P}(\mathrm{U})$ for universe U
That is: $\{(A, B): A \subseteq B$ and $A, B \in P(U)\}$

## Perhaps most importantly...

The "transitions" in a DFA/NFA are a relation!

They say "for a particular character, these two states are "related".


## Combining Relations

Let $R$ be a relation from $A$ to $B$. Let $S$ be a relation from $B$ to $C$.

$$
\begin{aligned}
& f: A \rightarrow K \quad g(f(x)) \\
& g: B \rightarrow C
\end{aligned}
$$

The composition of $R$ and $S, S \circ R$ is the relation from $A$ to $C$ defined by:
$S \circ R=\{(a, c) \mid \exists b$ such that $(a, b) \in R$ and $(b, c) \in S\}$

Intuitively, a pair is in the composition if there is a "connection" from the first to the second.

## Relation Examples

$$
\begin{aligned}
R_{1}= & \{(a, 1),(a, 2),(b, 1),(b, 3),(c, 3)\} \\
R_{2}= & \{(x, y): x \equiv y(\bmod 5)\} \\
\mathbf{R}_{3}= & \left\{\left(c_{1}, c_{2}\right): c_{1} \text { is a prerequisite of } c_{2}\right\} \\
& (311,32),(142,311),(142,332) \\
\mathbf{R}_{4}= & \{(\mathbf{s}, \mathrm{c}): \text { student } s \text { had taken course } c\}
\end{aligned}
$$

## Properties of Relations

Let $R$ be a relation on $A$.
$R$ is reflexive of $(a, a) \in R$ for every $a \in A$
$R$ is symmetric of $(a, b) \in R$ implies $(b, a) \in R$
$R$ is antisymmetric of $(a, b) \in R$ and $(b, a) \in R$ implies $a=b$
$R$ is transitive eff $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$

## Powers of a Relation

Let $R$ be a relation on $A$.

$R^{2}=R \circ R=\{(a, c): \exists b((a, b) \in R$ and $(b, c) \in R$
$R^{0}=\{(a, c): a \in A\}=A$
$\{(2,2),(1,3),(1,2)$
$R^{1}=\{(a, b):(a, b) \in R\}=R$

$R^{n+1}=R^{n} \circ R$

## Epsilon Closure...

The epsilonClosure of the epsilon transitions is $\mathrm{R}^{*}$
We keep on composing the relation over and over until there's nothing left to add.

This is called the "transitive closure" of a relation.

$R \cup R^{2} \cup R^{3} U$

Transitive-Reflexive Closure


Add the minimum possible number of edges to make the relation transitive and reflexive.

The transitive-reflexive closure of a relation $R$ is the connectivity relation $R^{*}$

## Representation of Relations

Directed Graph Representation (Digraph)
$\{(a, b),(a, a),(b, a),(c, a),(c, d),(c, e)(d, e)\}$



[^0]:    Let A be a set,

