Spring 2017
 CSF
 Foundations of Computing I

Example

Prove: $(p \wedge q) \rightarrow(p \vee q)$

Example

Prove: $((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$

Example

Prove: $(p \wedge q) \rightarrow(p \vee q)$

Example

Assumption
MP: 1.2, 1.4.1
MP: 1.3, 1.4.2
Direct Proof Rule
(1) $((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$ Direct Proof Rule

One General Proof Strategy

1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
3. Write the proof beginning with what you figured out for 2 followed by 1.

Aside: Why do we need proofs? (again!)

- $(0.5)+(0.2)(0.3)=(0.5+0.2)(0.5+0.3)$

$$
\begin{aligned}
& =(0.7)(0.8) \\
& =0.56
\end{aligned}
$$

- Solve for x in the inequality: $|x|+|x-1|<2$. Combining the terms of the left side, we find that the inequality is equivalent to $|2 x-1|<2$. So, $1 / 2<x<3 / 2$.

Definitions: The Base of All Proofs

Domain of Discourse

\exists Introduction
$P(c)$ for some c
$\therefore \exists x P(x)$

- A significant part of writing proofs is unrolling and re-rolling definitions.

$$
\begin{aligned}
& \text { Predicate Definitions } \\
& \text { Even }(x) \equiv \exists y(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y(x=2 y+1)
\end{aligned}
$$

- Prove the statement $\exists a(\operatorname{Even}(a))$

$$
2=2 \Varangle .1
$$

2. Even (2) Jintro: 1
3. $\exists a(E \operatorname{Ven}(a))$
\exists Ender: 2

CSE 311: Foundations of Computing

Lecture 8: More Proofs

Inference rules for quantifiers

** By special, we mean that c is a name for a value where $P(c)$ is true We can't use anything else about that value, so c has to be a NEW variable!

Definitions: The Base of All Proofs

- Before proving anything about a topic, we need to provide definitions.
- A significant part of writing proofs is unrolling and re-rolling definitions.

$$
\begin{array}{|l|}
\hline \text { Predicate Definitions } \\
\hline \text { Even }(x) \equiv \exists y(x=2 y) \\
\operatorname{Odd}(x) \equiv \exists y(x=2 y+1) \\
\hline
\end{array}
$$

- Prove the statement $\exists a$ (Even $(a))$

1. $2=2 * 1 \quad$ Definition of Multiplication
2. Even(2) \exists Intro: 1
3. $\exists x \operatorname{Even}(x) \quad \exists$ Intro: 2

Definitions: The Base of All Proofs

Predicate Definitions

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y(x=2 y+1)
\end{aligned}
$$

Prove the statement $\exists a(\operatorname{Even}(a))$

1. $2=2 * 1 \quad$ Definition of Multiplication
2. Exer(2) \exists Intro: $1 \quad \exists y(2 \leq 2 y)$
3. $\exists x \operatorname{Even}(x) \quad \exists$ Intro: 2

Okay, you might say, but now we have "definition of multiplication"! Isn't that cheating?
Well, sort of, but we're going to trust that basic arithmetic operations work the way we'd expect. There's a fine line, and you can always ask if you're allowed to assume something (though the answer will usually be no...).

Definitions: The Base of All Proofs

Predicate Definitions

$\operatorname{Even}(\mathrm{x}) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$
Primeish $(\mathrm{x}) \equiv \forall a \forall b(((a<b \wedge a b=x) \rightarrow(a=1 \wedge b=x)))$
Prove the statement $\exists a$ (Primeish (a))

Proof Strategy:

- 2 is going to work.
- Try to prove all the individual facts we need.
- We do this from the inside out...

1.
2.
3.
4.

Definitions: The Base of All Proofs

Domain of Discourse

Predicate Definitions
$\operatorname{Even}(\mathrm{x}) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x \equiv 2 y+1)$
Primeish $(x)=$ Y $4 \times(((a<b \wedge a b=x) \rightarrow(a=1 \wedge b=x)))$
Prove the statement $\exists a$ (Primeish (a))
Proof Strategy:

- 2 is going to work.
- Try to prove all the individual facts we need.
- We do this from the inside out...

1. Let a be arbitrary	Defining a
2. Let b be arbitrary	Defining b
3. $a \leq 2 \vee a>2$	Excluded Middle
4. $\mathrm{b} \leq 2 \vee b>2$	Excluded Middle

Definitions: The Base of All Proofs

Predicate Definitions

Primeish $(\mathrm{x}) \equiv \forall a \forall b(((a<b \wedge a b=x) \rightarrow(a=1 \wedge b=x)))$
Prove the statement $\exists a$ (Primeish $(a))$

1. Let a be arbitrary Defining a
2. Let b be arbitrary Defining b
3. $a \leq 2 \vee a>2 \quad$ Excluded Middle
4. $\mathrm{b} \leq 2 \vee b>2 \quad$ Excluded Middle
5. $(a \leq 2 \vee a>2) \wedge(b \leq 2 \vee b>2) \wedge$ Intro: 3, 4
6. $(a<b \wedge a b=2) \rightarrow(a=1 \wedge b=2)$

Direct Proof Rule

Definitions: The Base of All Proofs

Domain of Discourse
Integers $>=1$

Predicate Definitions
Primeish $(\mathrm{x}) \equiv \forall a \forall b(((a<b \wedge a b=x) \rightarrow(a=1 \wedge b=x)))$

Prove the statement $\exists a$ (Primeish (a))

1. Let a be arbitrary
2. Let b be arbitrary

Defining a
3. $a \leq 2 \vee a>2$

Defining b
Excluded Middle

Excluded Middle
$\begin{array}{ll}\text { 4. } \mathrm{b} \leq 2 \vee b>2 & \text { Excluded Mid } \\ \text { 5. }(a \leq 2 \vee a>2) \wedge(\mathrm{b} \leq 2 \vee b>2) & \wedge \text { Intro: } \mathbf{3 , 4}\end{array}$
$\begin{array}{lll}\text { 6.1. } & a<b \wedge a b=2 & \text { Assumption } \\ \text { 6.2. } & a<b & \wedge \text { Elim: 6.1 }\end{array}$
$\begin{array}{lll}\text { 6.1. } & a<b \wedge a b=2 & \text { Assumption } \\ \text { 6.2. } & a<b & \wedge \text { Elim: } 6.1\end{array}$
^ Elim: 6.1 Simplifying 5 via $6.2 \& 6.3$ Direct Proof Rule
6.3. $\quad a b=2$
6.4. $a=1 \wedge b=2$
6. $(a<b \wedge a b=2) \rightarrow(a=1 \wedge b=2)$

Definitions: The Base of All Proofs

Domain of Discourse

 Integers >= 1Predicate Definitions
Primeish $(\mathrm{x}) \equiv \forall a \forall b(((a<b \wedge a b=x) \rightarrow(a=1 \wedge b=x)))$
Prove the statement $\exists a$ (Primeish (a))

Ugh...so much work

Predicate Definitions
$\operatorname{Even}(\mathrm{x}) \equiv \exists y(x=2 y)$
Primeish $(\mathrm{x}) \equiv \forall a \forall b(((a<b \wedge a b=x) \rightarrow(a=1 \wedge b=x)))$
Note that $2=2 * 1$ by definition of multiplication. It follows that there is a y such that $2^{-2} 2 y$; so, two is even. $\left.(l) d f.\right)$

Consider two arbitrary non-negative integers a, b.
Suppose $\mathrm{a}<\mathrm{b}$ and $\mathrm{ab}=2$. Note that when $\mathrm{b}>2$, the product is always greater than 2. Furthermore, $\mathrm{a}<\mathrm{b}$. So, the only solution to the equation is $a=1$ and $b=2$. So, $a=1$ and $b=2$.

Since a and b were arbitrary, it follows that 2 is primeish.

Since 2 is even and prime, there exists a number that is even and primeish.
Primeish $(\mathrm{x}) \equiv \forall a \forall b(((a<b \wedge a b=x) \rightarrow(a=1 \wedge b=x)))$

Prove the statement $\exists a(\operatorname{Primeish}(a))$

Proofs using Quantifiers

"There exists an even primeish number"
First, we translate into predicate logic:
$\exists x$ Even $(x) \wedge$ Primeish (x)
We've already proven Even(2)and Primeish(2); so, we can use them as givens...

1.	Even (2)	Prev. Slide
2.	Primeish (2)	Prev. Slide
3.	$\operatorname{Even}(2) \wedge \operatorname{Primeish}(2)$	\wedge Intro: 1, 2
4. $\exists x(\operatorname{Even}(x) \wedge \operatorname{Primeish}(x))$	\exists Intro: $\mathbf{3}$	

Even and Odd	Predicate Definitions $\operatorname{Even}(x) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove: "The square of every even number is even."

Even and Odd	Predicate Definitions Even $(x) \equiv \exists y(x=2 y)$ Odd $(\mathrm{x})=\exists y(x=2 y+1)$

Even and Odd	Even $(x) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$	Domain of Discourse
Prove: "The square of every odd number is odd." wis: $\forall x)\left(\partial \operatorname{Odd}^{2}(x) \rightarrow \operatorname{Odd}\left(x^{2}\right)\right)$ Let a be as $a(b$. Idd nmen. suppose x is a4t. Then, by dor. opoll, $\alpha=2 q+1$ for some q. wote $\left.a^{2}=(29+1)\right)^{2}=$		

Known Statements
$\forall x(\operatorname{Even}(x) \vee \operatorname{Odd}(x)) \quad$ Domain of Discourse

Choose a particularx we care about
$\exists y(16=4 y)$
Assert that one exists. *We can't assert any other properties though!!!!*

$\frac{\text { Unknown Statements }}{$| $(\exists y(16=4 y)) \rightarrow(\exists y(16=2 y))$ |
| :--- |
| Suppose the left side and prove the right side. |} | Domain of Discourse |
| :--- |
| Integers |

$\forall x((\exists y(x=4 y)) \rightarrow(\exists y(x=2 y)))$
Define an "arbitrary x " and prove it for that x.

Even and Odd	Predicate Definitions Even $(x) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$$\quad$Domain of Discourse Integers

Prove: "The square of every odd number is odd."

Let x be an arbitrary odd number.
Then, $x=2 k+1$ for some integer k (depending on x).
Therefore, $\mathrm{x}^{2}=(2 \mathrm{k}+1)^{2}=4 \mathrm{k}^{2}+4 \mathrm{k}+1=2\left(2 \mathrm{k}^{2}+2 \mathrm{k}\right)+1$.
Since $2 k^{2}+2 k$ is an integer, x^{2} is odd.

Known Statements

$\forall x(\operatorname{Even}(x) \vee \operatorname{Odd}(x))$
Domain of Discourse

Choose a particularx we care about.
"Since every integer is either even or odd, it follows that 5 is even or odd..."
$\exists y(16=4 y)$
Assert that one exists. *We can't assert any other properties though!!!!*
"Choose z such that $16=4 z . .$.

$(\exists y(16=4 y)) \rightarrow(\exists y(16=2 y)) \frac{\text { Domain of Discourse }}{\text { Integers }}$
"Suppose $16=4 y$ for some y. Then, note that $16=2(2 y)$. Thus, there is an x such that $16=2 x$ (namely, $2 y$)."
$\forall x((\exists y(x=4 y)) \rightarrow(\exists y(x=2 y)))$
"Let x be arbitrary. Suppose $x=4 y$ for some y. Then, note that $x=2(2 y)$. Thus, there is a z such that $x=2 z$ (namely, $2 y$)."

Counterexamples

To disprove $\forall \mathrm{x} \mathrm{P}(\mathrm{x})$ prove $\neg \forall \mathrm{x} \mathrm{P}(\mathrm{x})$:
$-\neg \forall x P(x) \equiv \exists x \neg P(x)$

- To prove the existential, find an x for which $\mathrm{P}(\mathrm{x})$ is false
- This example is called a counterexample.

Counterexample...example

Counterexample...example	
Disprove "Every non-negative integer has another number smaller than it."	
	$\forall x \exists y(y<x)$
$\begin{aligned} & \text { Tell the reader that } \\ & \text { we're about to use a } \\ & \text { "counterexample". } \end{aligned}\left\{\begin{array}{l} \text { We claim } \forall x \exists y(y<x) \text { is false. So, we } \\ \text { show the negation, } \exists x \forall y(y \geq x) \text {, is true. } \end{array}\right.$	
Use \exists Intro.	$\{\text { Consider } x=0$
Use \forall Intro.	$\{\text { Let } \mathrm{y} \text { be arbitrary. }$
Prove the \forall statement.	$\left\{\begin{array}{l} \text { Since } y \text { is non-negative, } y \geq 0 . \text { So, the claim } \\ \text { is true. } \end{array}\right.$
Conclude the proof.	Thus, the original claim is false.

Counterexample...example

Disprove "Every non-negative integer has another number smaller than it."

$$
\forall x \exists y(y<x)
$$

