
Foundations of
Computing I

CSE311

Adam Blank Spring 2017
Digital Circuits

Computing With Logic
– T corresponds to 1 or �high� voltage
– F corresponds to 0 or �low� voltage

Gates
– Take inputs and produce outputs (functions)
– Several kinds of gates
– Correspond to propositional connectives (most

of them)

And Gate

p q p#∧ q
T T T
T F F
F T F
F F F

p q OUT

1 1 1
1 0 0
0 1 0
0 0 0

AND Connective AND Gate

q
p

OUTAND

�block looks like D of AND�

p OUTANDqp#∧ q

vs.

Or Gate

p q p#∨ q
T T T
T F T
F T T
F F F

p q OUT

1 1 1
1 0 1
0 1 1
0 0 0

OR Connective OR Gate

p OUTORqp#∨ q

vs.

p
q

OR

�arrowhead block looks like V�

OUT

Not Gates

¬p
NOT Gate

p ¬ p
T F
F T

p OUT

1 0
0 1

vs.NOT Connective

Also called
inverter

p OUTNOT

p OUTNOT

Blobs are Okay!

p OUTNOT

p
q OUTAND

p
q OUTOR

You may write gates using blobs instead of shapes!

Combinational Logic Circuits

Values get sent along wires connecting gates

NOT

OR

AND

AND

NOT

p

q

r
s

OUT

Combinational Logic Circuits

Values get sent along wires connecting gates

NOT

OR

AND

AND

NOT

p

q

r
s

OUT

Combinational Logic Circuits

Wires can send one value to multiple gates!

OR

AND

NOT

AND
p

q

r

OUT

% ∧ ¬() ∨ (¬(∧ ,)

Administrivia

• Extra Credit: Included post-grades-calculation
• Tokens: Redos for WRITTEN questions
• Lying TAs approach!

• Come to my office hours "

Some Familiar Properties of Arithmetic

What are there logical versions of these rules?

Some Familiar Properties of Arithmetic

What are there logical versions of these rules?

Properties of Logical Connectives We will always give
you this list! Understanding Connectives

• Reflect basic rules of reasoning and logic
• Allow manipulation of logical formulas
– Simplification
– Testing for equivalence

• Applications
– Query optimization
– Search optimization and caching
– Artificial Intelligence
– Program verification

CSE 311: Foundations of Computing

Lecture 3: More Equivalence & Boolean Algebra

Computing Equivalence

Given two propositions, can we write an algorithm to
determine if they are equivalent?

Yes! Generate the truth tables for both propositions and check
if they are the same for every entry.

What is the runtime of our algorithm?

Every atomic proposition has two possibilities (T, F). If there are
n atomic propositions, there are 2/ rows in the truth table.

Logical Proofs

To show A is equivalent to B:
Apply a series of logical equivalences to sub-expressions to
convert A to B

Example:
Let A be “% ∨ (% ∨ %)”, and B be “%”.
Our general proof looks like:

% ∨ % ∨ % ≡)()
≡ %

Logical Proofs

To show A is equivalent to B:
Apply a series of logical equivalences to sub-expressions to
convert A to B

Example:
Let A be “% ∨ (% ∨ %)”, and B be “%”.
Our general proof looks like:

% ∨ % ∨ % ≡)()
≡ %

% ∨ % By Idempotency

By Idempotency

Logical Proofs

To show A is a Tautology:
Apply a series of logical equivalences to sub-expressions to
convert P to T.

Example:
Let A be “¬% ∨ (% ∨ %)”.
Our general proof looks like:

¬% ∨ % ∨ % ≡)()
≡ T

Logical Proofs

To show A is a Tautology:
Apply a series of logical equivalences to sub-expressions to
convert P to T.

Example:
Let A be “¬% ∨ (% ∨ %)”.
Our general proof looks like:

¬% ∨ % ∨ % ≡)()
≡ T

¬% ∨ % By Idempotency
By Negation

Prove this is a Tautology: Option 1

(p ∧ q)#→ (p ∨ q)

p q p)∧ q p)∨ q (p)∧ q))→ (p)∨ q)
T T T T T

T F F T T

F T F T T

F F F F T

Make a Truth Table and show:

% ∧ (→ % ∨ (≡)T

Prove this is a Tautology: Option 2

(p ∧ q)#→ (p ∨ q)
Use a series of equivalences like so:

% ∧ (→ % ∨ (≡ ¬ % ∧ (∨ (% ∨ ()
≡ ¬% ∨ ¬(∨ (% ∨ ()
≡ ¬% ∨ (¬(∨ % ∨ ()
≡ ¬% ∨ (¬(∨ (∨ %)
≡ ¬% ∨ (¬(∨ (∨ %)
≡ ¬% ∨ ((∨ ¬(∨ %)
≡ ¬% ∨ (T ∨ %)
≡ ¬% ∨ (% ∨ T)
≡ ¬% ∨ T
≡ T

By Law of Implication
By DeMorgan’s Laws

By Associativity
By Commutativity
By Associativity

By Commutativity

By Negation

By Commutativity

By Domination

By Domination

Prove these propositions are equivalent

Prove: p#∧ (p#→ q) ≡ p#∧ q

% ∧ % → (≡ % ∧ (¬% ∨ ()
≡ % ∧ ¬% ∨ (% ∧ ()
≡ F ∨ (% ∧ ()
≡ % ∧ (∨)F
≡ % ∧ (

By Law of Implication
By Distributivity

By Negation

By Commutativity
By Identity

Prove these are not equivalent

(p→ q)#→ r p→ (q→ r)
Consider: p is __, q is __, and r is __…

Prove these are not equivalent

(p→ q)#→ r p→ (q→ r)
Consider: p is F, q is F, and r is F…

F → F → F ≡ F → F
≡ T

F → F → F ≡ T → F
≡ F

Boolean Logic

Combinational Logic
– output = F(input)

Sequential Logic
– outputt = F(outputt-1, inputt)
• output dependent on history
• concept of a time step (clock, t)

Boolean Algebra consists of…
– a set of elements B = {0, 1}
– binary operations { + , • } (OR, AND)
– and a unary operation { ’ } (NOT)

Combinational Logic

• Switches
• Basic logic and truth tables
• Logic functions
• Boolean algebra
• Proofs by re-writing and by truth table

A Combinational Logic Example

Sessions of Class:
We would like to compute the number of lectures or
quiz sections remaining at the start of a given day of
the week.

– Inputs: Day of the Week, Lecture/Section flag
– Output: Number of sessions left

Examples: Input: (Wednesday, Lecture) Output: 2
Input: (Monday, Section) Output: 1

Implementation in Software
public'int classesLeftInMorning(weekday,'lecture_flag)'{

switch'(weekday)'{
case'SUNDAY:
case'MONDAY:

return'lecture_flag ?'3':'1;
case'TUESDAY:
case'WEDNESDAY:

return'lecture_flag ?'2':'1;
case'THURSDAY:

return'lecture_flag ?'1':'1;
case'FRIDAY:

return'lecture_flag ?'1':'0;
case'SATURDAY:

return'lecture_flag ?'0':'0;
}

}

Implementation with Combinational Logic

Encoding:
– How many bits for each input/output?
– Binary number for weekday
– One bit for each possible output

Lecture'='0,'Section'='1Weekday

0 1 2 3

Defining Our Inputs!

Weekday Number Binary
Sunday 0 (000)2
Monday 1 (001)2
Tuesday 2 (010)2

Wednesday 3 (011)2
Thursday 4 (100)2
Friday 5 (101)2

Saturday 6 (110)2

Weekday Input:
– Binary number for weekday
– Sunday = 0, Monday = 1, …
– We care about these in binary:

Converting to a Truth Table!

case'SUNDAY'or'MONDAY:
return'lecture_flag ?'3':'1;

case'TUESDAY'or'WEDNESDAY:
return'lecture_flag ?'2':'1;

case'THURSDAY:
return'lecture_flag ?'1':'1;

case'FRIDAY:
return'lecture_flag ?'1':'0;

case'SATURDAY:
return'lecture_flag ?'0':'0;

Weekday Lecture=0 c0 c1 c2 c3
SUN 000 0

SUN 000 1

MON 001 0

MON 001 1

TUE 010 0

TUE 010 1

WED 011 0

WED 011 1

THU 100 !

FRI 101 0

FRI 101 1

SAT 110 !

- 111 !

