CSE 311: Foundations of Computing I

Modular Arithmetic Annotated Proofs

Relevant Definitions

$a \mid b$ (" a divides b ")
For $a, b \in \mathbb{Z}$, where $a \neq 0$: $\quad a \mid b$ iff $\exists(k \in \mathbb{Z}) b=k a$

```
\(a \equiv b(\bmod m)\) (" \(a\) is congruent to \(b\) modulo \(m\) )
For \(a, b \in \mathbb{Z}, m \in \mathbb{Z}^{+}\):
    \(a \equiv b(\bmod m)\) iff \(m \mid(a-b)\)
```


Division Theorem

For $a \in \mathbb{Z}, d \in \mathbb{Z}^{+}$:
There exist unique $q, r \in \mathbb{Z}$, where $0 \leq r<d$ such that $a=d q+r$

The Claim

Prove for all integers a, b and positive integers $m, a \equiv b(\bmod m) \leftrightarrow a \bmod m=b \bmod m$.

Proof
Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$.

Suppose $a \equiv b(\bmod m)$.

By definition of congruence, we have $m \mid(a-b)$.
By definition of divides, we have $a-b=k m$ for some integer k.

Adding b to both sides, we have $a=b+k m$. Taking both sides $\bmod m$, we have $a \bmod m=$ $(b+k m) \bmod m=b \bmod m$. So, $a \bmod m=$ $b \bmod m$.

Now, suppose $a \bmod m=b \bmod m$.

By the division theorem, we have $a=m k_{a}+$ $(a \bmod m)$ for some $k_{a} \in \mathbb{Z}$ and $b=m k_{b}+$ $(b \bmod m)$ for some $k_{b} \in \mathbb{Z}$

Commentary \& Scratch Work

Remove the \forall 's. .
We want to prove a bi-implication; so, we will have two sub-proofs. First, we'll assume the left and prove the right. Then, we'll assume the right and prove the left.

Begin with assuming the left and proving the right. At this point in the proof, we will be manipulating relevant definitions until the end.

We can't work with \equiv 's. So, use the definition to remove the notation.

Divides isn't much better; apply definitions.

Now, re-arrange the equations to get it to mods. Manipulate until we have what we wanted.

Now, we prove the other implication. It's the same "unroll the definitions" idea.

We need to get to equivalences, which we can do via divides, which we can get via equations. The division theorem seems like the right approach.

Re-arranging both equations, we have: $a \bmod m=a-m k_{a}$ and $b \bmod m=b-m k_{b}$.

Since these are equal, we have $a-m k_{a}=b-m k_{b}$. Re-arranging, we have $a-b=\left(k_{a}-k_{b}\right) m$. So, by definition of divides, $m \mid(a-b)$. So, by definition of mod, we have $a \equiv b(\bmod m)$.

We want the equations in terms of mod, because we can set them equal.

Re-rolling the definitions in reverse. It's worth noting that this feels a lot like the first half of the proof in reverse. The only difference is that it uses different variables.

