CSE 311: Foundations of Computing I

Modular Arithmetic Annotated Proofs

Relevant Definitions

$a \mid b$ ("a divides b")		
For $a, b \in \mathbb{Z}$, where $a \neq 0$:	$a \mid b \text{ iff } \exists (k \in \mathbb{Z}) \ b = ka$	
$a \equiv b \pmod{m}$ ("a is congruent	t to b modulo m)	
For $a, b \in \mathbb{Z}$, $m \in \mathbb{Z}^+$:	$a \equiv b \pmod{m}$ iff $m \mid (a - b)$	
Division Theorem		

For $a \in \mathbb{Z}$, $d \in \mathbb{Z}^+$:

There exist unique $q,r \in \mathbb{Z}$, where $0 \leq r < d$ such that a = dq + r

The Claim

Prove for all integers a, b and positive integers $m, a \equiv b \pmod{m} \leftrightarrow a \mod m = b \mod m$.

Proof	Commentary & Scratch Work
Let $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^+$.	Remove the \forall 's
	We want to prove a bi-implication; so, we will have two sub-proofs. First, we'll assume the left and prove the right. Then, we'll assume the right and prove the left.
Suppose $a \equiv b \pmod{m}$.	Begin with assuming the left and proving the right. At this point in the proof, we will be manipulating relevant definitions until the end.
By definition of congruence, we have $m \mid (a - b)$.	We can't work with \equiv 's. So, use the definition to remove the notation.
By definition of divides, we have $a - b = km$ for some integer k .	Divides isn't much better; apply definitions.
Adding b to both sides, we have $a = b + km$. Taking both sides mod m , we have $a \mod m = (b + km) \mod m = b \mod m$. So, $a \mod m = b \mod m$.	Now, re-arrange the equations to get it to mods. Manipulate until we have what we wanted.
Now, suppose $a \mod m = b \mod m$.	<i>Now, we prove the other implication. It's the same "unroll the definitions" idea.</i>
By the division theorem, we have $a = mk_a + (a \mod m)$ for some $k_a \in \mathbb{Z}$ and $b = mk_b + (b \mod m)$ for some $k_b \in \mathbb{Z}$	We need to get to equivalences, which we can do via divides, which we can get via equations. The division theorem seems like the right approach.

Re-arranging both equations, we have:	We want the equations in terms of mod, because
$a \mod m = a - mk_a$ and $b \mod m = b - mk_b$.	we can set them equal.
Since these are equal, we have $a - mk_a = b - mk_b$. Re-arranging, we have $a - b = (k_a - k_b)m$. So, by definition of divides, $m \mid (a - b)$. So, by definition of mod, we have $a \equiv b \pmod{m}$.	Re-rolling the definitions in reverse. It's worth not- ing that this feels a lot like the first half of the proof in reverse. The only difference is that it uses different variables.